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Abstract
Feature representation is generally applied to reducing the dimensions of high-dimensional data to accelerate the process of
data handling and enhance the performance of pattern recognition. However, the dimensionality of data nowadays appears to
be a rapidly increasing trend. Existing unsupervised feature representation methods are susceptible to the rapidly increasing
dimensionality of data, which may result in learning a meaningless feature that in turn affect their performance in other
applications. In this paper, an unsupervised adversarial auto-encoder network is studied. This network is a probability
model that combines generative adversarial networks and variational auto-encoder to perform variational inference and aims
to generate reconstructed data similar to original data as much as possible. Due to its adversarial training, this model is
relatively robust in feature learning compared with other methods. First, the architecture and training strategy of adversarial
auto-encoder are presented. We attempt to learn a discriminative feature representation for high-dimensional image data via
adversarial auto-encoder and take its advantage into image clustering, which has become a difficult computer vision task
recently. Then amounts of comparative experiments are carried out. The comparison contains eight feature representation
methods and two recently proposed deep clustering methods performed on eight different publicly available image data sets.
Finally, to evaluate their performance, we utilize a K-means clustering on the low-dimensional feature learned from each
feature representation algorithm, and select three evaluation metrics including clustering accuracy, adjusted rand index and
normalized mutual information, to provide a comparison. Comprehensive experiments prove the usefulness of the learned
discriminative feature via adversarial auto-encoder in the tested data sets.

Keywords Unsupervised learning · Image clustering · Feature representation · Adversarial auto-encoder ·
Generative adversarial networks

1 Introduction

Nowadays, the data information in many research areas like
object detection [13], text categorization [23, 26] and face
recognition [2, 40], is always provided with a high dimen-
sion. Thus many difficulties in information processing have
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led to extensive discussions on how to compress the big
data. It is well known that a learning model could not see
or hear input data directly. Instead, it needs to learn the rep-
resentation of the original data information for providing
useful compressed data to the model. Feature representa-
tion [42] is a method that aims to deal with such big data
efficiently by representing these data in a low-dimensional
form. It can be broadly divided into supervised, semi-
supervised and unsupervised based methods. Although the
performance of supervised methods in tests is generally bet-
ter than the unsupervised one, supervised methods require
all the label information of test data, which will spend a
huge amount of efforts to label big data, let alone some of
them are difficult to label. Hence the potential of dealing
with the ‘curse of dimensionality’ by unsupervised feature
representation methods is worth exploring.

The classic unsupervised feature representation meth-
ods contain two forms, namely linear based and non-linear
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based methods, respectively. Principal component analysis
(PCA) and locality preserving projections (LPP) are two
algorithms based on linear transformation [20, 43]. PCA
is the most common method for linear feature representa-
tion partly due to its simplicity. Different from PCA, LPP
mainly puts emphasis on retaining the neighborhood struc-
ture between input data points, not the global structure. Fur-
thermore, isometric feature mapping (Isomap) and neigh-
borhood preserving embedding (NPE) are two algorithms
based on non-linear transformation [1, 19]. The central ide-
ology of Isomap is to reserve geodesic distances among
all the input data pairs as much as possible through defin-
ing a low-dimensional embedding. While NPE aims to seek
out the local neighborhood structure between data points, it
can be considered as a variant of locally linear embedding
(LLE) [37].

Auto-encoder neural network [21] is another feature
representation method, whose architecture consists of an
input layer, a hidden layer and an output layer. The
network utilizes a linear objective function for linear
projection and a sigmoid function to realize non-linear
mapping. Variants of auto-encoder network have received
many achievements in unsupervised learning in the past
decade. For instance, Xie et al. [45] proposed the deep
embedded clustering method (DEC) which is based on
the auto-encoder network, to learn a clustering oriented
feature representation by jointly optimizing the clustering
and low-dimensional representation learning, and obtained
inspiring clustering performance. Furthermore, Guo et al.
[17] noticed the shortcoming of DEC that it lacks the
retention of local structure and may result in the distortion
of feature space. To this end, they proposed the improved
embedded clustering method (IDEC), which simultaneously
applies the clustering loss and reconstruction loss in the
training process to avoid the distortion of feature space.

According to the idea of combining the variational auto-
encoder with the generative adversarial networks (GAN) [9,
15, 49], Makhzani et al. proposed a method called adver-
sarial auto-encoder (AAE) [25, 28]. The structure of GAN
consists of a generative network and a discriminative net-
work. During the training process, the generative network
is trained to fool the discriminator into believing that the
generated samples are true samples, while the discrimi-
native network aims to improve its ability to distinguish
the authenticity of samples. Generally, AAE can be par-
titioned into two stages: the reconstruction stage and the
regularization stage. Reconstruction stage aims to minimize
the reconstruction loss of input data, while the target of reg-
ularization stage is to update the parameters of generator
and discriminator. In recent years, the application of AAE
in feature representation research field has been studied
widely. Barone et al. [3] proposed a method that uses AAE
to learn a cross-lingual oriented distributed representation

without training the parallel text. That was different from
current approaches which need an amount of parallel text
to be used to learn a representation which is compatible
between different languages, and it creates a potentially
promising field in natural language processing research.
Moreover, Zhifei Zhang et al. used the proposed conditional
adversarial auto-encoder to learn a latent representation for
human face through the imposed adversarial training on
encoder and generator [47]. This learned latent representa-
tion well retains the personalized features of human faces
so that it can achieve a glossy age progression and obtain
state-of-the-art performance.

However, the application of AAE in image clustering is
rarely studied. The main purpose of clustering methods [18,
31, 41] is to partition input data into multiple clusters with-
out the guidance of label information, and join the points
in the same category as close to each other as much as
possible, while separating the points in different categories.
Some clustering methods have been smoothly applied to
text clustering for enhancing the performance of its applica-
tions, but image clustering is still a difficult computer vision
task because of its the pixel-level based characteristics.
Since the image data today often owns a high dimension,
most images need to be processed before clustering. Tak-
ing the feature representation method as an instance, some
methods could not preserve the pixel feature well after
the original data is reduced to a relatively low dimension,
which leads to unsatisfactory performance of image cluster-
ing. Thus how to learn an encouraging representation from
high-dimensional image data is a topic worthy of further
study.

In this paper, we attempt to learn a discriminative feature
representation via adversarial auto-encoder. First, the archi-
tecture and training strategy of adversarial auto-encoder are
presented, and for the fairness of comparative experiments,
a publicly available auto-encoder network and GAN struc-
ture are utilized. Then adversarial auto-encoder is applied
to learning a discriminative feature representation for image
data and compared with seven feature representation meth-
ods by learning the low-dimensional feature on eight pub-
licly available image data sets. Especially, in order to prove
the usefulness of the learned discriminative feature repre-
sentation, we also compare the performance of AAE with
two recently proposed deep clustering methods. For the
purpose of assessing their performance, we perform image
clustering through K-means method [18] on the feature
learned from each algorithm, and select three evaluation
metrics including clustering accuracy (ACC) [22, 34], nor-
malized mutual information (NMI) [10] and adjusted rand
index (ARI) [39], to provide comparison. Finally, com-
prehensive experiments illustrate the effectiveness of the
learned discriminative feature via an unsupervised adversar-
ial auto-encoder algorithm in the tested data sets.
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The main contribution of this work is summed up as
follows:

• This paper is an attempt to apply the adversarial auto-
encoder (AAE) network to learn the discriminative
feature for the image clustering task, which has never
been studied before. This work could provide a new per-
spective to study unsupervised feature representation
methods.

• For the purpose of providing the readers a clearer
understanding of the unsupervised feature representa-
tion, we have divided the unsupervised feature repre-
sentation methods into three categories (linear trans-
formation based, non-linear transformation based, and
auto-encoder based) based on experience and compre-
hensively reviewed these methods in Section 2.

• Along the framework of adversarial auto-encoder, we
propose a new method to conduct an unsupervised fea-
ture learning and image clustering task simultaneously,
and adjust the network and some parameters to make
the structure of adversarial auto-encoder more suitable
for the image clustering task.

• We conduct a fairly comprehensive experiment cover-
ing eight different image data sets (handwritten fonts,
human faces, object images, etc.) and nine differ-
ent comparative algorithms (classic feature representa-
tion methods, recently proposed feature representation
methods and novel deep clustering methods).

• The performance of the designed network outperforms
other comparative algorithms in the image clustering
issue of the tested data sets.

In the following sections, we review some related work
on feature representation learning in Section 2. Then in
Section 3, the network structure and training strategy
of adversarial auto-encoder are presented. In Section 4,
several comparative experiments are reported to prove the
effectiveness of the discriminative feature learned from
adversarial auto-encoder method. Ultimately, this paper is
summed up in Section 5.

2 Related work

For the convenience of expression, we indicate the
collection of input data samples and their labels as X and L,
respectively. Hence input data matrix is represented by X =[
x1, · · · , xn

] ∈ R
d×n, where xi ∈ R

d is a d dimensional
feature vector.

In this section, we present some classic feature represen-
tation methods, which can be broadly partitioned into three
classes: linear transformation based feature representation,
non-linear transformation based feature representation and
variations of auto-encoder neural network.

2.1 Linear transformation based feature
representation

Until now, linear feature representation is still a focal point
in many fields such as image processing and pattern recog-
nition. This may be owing to its intuitiveness, simplicity,
and effectiveness in handling numerous real-world issues.

Generally speaking, for an input data matrix X =[
x1, · · · , xn

] ∈ R
d×n, performing a linear transformation

on the original high-dimensional space is the simplest way
to obtain a subspace with low dimension. It is able to be
formalized as

X′ = WTX (1)

where WT ∈ R
d ′×d is the transformation matrix and d ′ is

the dimensions of subspace
(
d ′ < d

)
.X′ = [

x′
1, · · · , x′

n
] ∈

R
d ′×n is the representation in low-dimensional subspace,

and x′
i = WTxi denotes a d ′-dimensional feature vector.

Evidently, the features in the new low-dimensional subspace
are linear combinations of features in the original high-
dimensional space.

Among the feature representation methods based on
linear transformation, PCA and LPP are two mainstream
methods. Though linear discriminant analysis (LDA) [30]
is another mainstream approach, it is a supervised one.
In this paper, We mainly focus on unsupervised feature
representation, hence LDA will not be discussed.

2.1.1 Principal component analysis

The central idea of PCA [7, 32, 36] is to utilize a linear
transformation to project the input data in the directions of
maximum variances, which aims to maintain the features
of input data when reducing to a subspace with a low
dimension, and minimize the reconstruction loss. For a
collection of input data matrix X = [

x1, · · · , xn

]
, denote a

transformation matrix as W and yi = WT xi , the objective
function of PCA can be represented as follows

argmax
‖W‖=1

n∑

i=1

(yi − ȳ)2 (2)

where ȳ = 1
n

∑n
i=1 yi indicates the mean of {yi}ni=1, then

(2) can be represented in another form

argmax
‖W‖=1

WT CW (3)

where C indicates the covariance matrix about input sam-
ples, and the eigenvectors of C relevant to the largest eigen-
values cross the most favorable subspace which generated
by PCA.
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2.1.2 Locality preserving projections

Different from PCA, LPPmainly puts emphasis on retaining
the local neighborhood architecture between input data
points, while PCA mainly revolves around retaining the
global architecture of input data.

LPP contains the advantages of manifold learning and
linear feature representation [36, 46], which is based
on a linear approximation of Laplacian Eigenmaps (LE)
method [4]. In simple terms, it is a linear version of LE
that utilizes a linear approximation method for non-linear
feature representation.

Assume input data matrix X = [
x1, · · · , xn

]
and a

linear transformation matrix W which projects X into a
subspace Y = [

y1, · · · , yn

]
with low dimension, the

objective function can be denoted as follows

min
W

n∑

i=1

n∑

j=1

∥∥yi − yj

∥∥2 P (i, j) (4)

where yi = WT xi , and P (i, j) which created by the
nearest-neighbor graph is a similarity matrix. When xi is
among kNN of xj or xi , P (i, j) can be formalized as

P (i, j) = e−‖xi−xj‖2

t (5)

2.2 Non-linear transformation based feature
representation

In the real world, not all data is linear structure. Data
structures such as trees and graphs, are very common, but
they are non-linear structures and therefore difficult to be
handled by linear methods. Hence, non-linear methods are
also widely studied. Isometric feature mapping (Isomap)
and neighborhood preserving embedding (NPE) are two
typical unsupervised feature representation methods based
on non-linear transformation.

2.2.1 Isometric feature mapping

Isomap [1, 38] is based on the method that retains geodesic
distances among all pairs of the data points as much as
possible by defining a low-dimensional embedding.

Isomap creates a neighborhood graph G to calculate the
geodesic distances among the input data. Then a shortest
path among two points in G is able to be calculated
through applying Dijkstra or Floyd algorithm [11, 24]. This
path matrix constitutes an evaluation about the geodesic
distance between two input data points. Finally, the geodesic
distances among all data points are calculated, thus it could
create a pairwise geodesic distance matrix.

But isomap method still has some disadvantages, such as
its topological instability. In a neighborhood graphG, it may

establish wrong connections between data points. Although
with some shortcomings, isomap is also widely applied in
many real-world problems successfully.

2.2.2 Neighborhood preserving embedding

The purpose of NPE [19, 36] is to seek out an approach
to implement local neighborhood structure retention [48]
for input data, which is similar to locally linear embedding
(LLE) [37]. NPE makes use of a local least squares
approximation method to assess the affinity weight matrix
W. For an input data matrix X = [

x1, · · · , xn

]
, the

local geometry of these data points can be characterized
through the reconstruction from their neighbors. Thus the
reconstruction error is able to be formalized by the cost
function as follows

φ (W) =
n∑

i=1

∥
∥xi −

n∑

j=1

Wijxj

∥
∥2 (6)

where xj is one of the neighbors of xi ,Wij ∈ W represents
the verge weight from xi to xj , and a constraint of Wij is
defined as
n∑

j=1

Wij = 1 (7)

2.3 Feature representation based on auto-encoder
neural network

Auto-encoder (AE) neural network is another method for
feature representation. In the past decade, variations of auto-
encoder neural network have received many achievements.
In this subsection, an unsupervised sparse auto-encoder
and a semi-supervised label consistent auto-encoder are
introduced.

2.3.1 Sparse auto-encoder

As a variant of auto-encoder, sparse auto-encoder (SAE)
assumes that its network is a sparse network. The difference
between SAE and auto-encoder is the definition of loss
function. SAE has a constraint on the output of the hidden
layer, it adds sparsity constraints to the hidden neurons, so
as to induce the mean value of hidden layer output close
to zero as much as possible. It indicates that most of the
hidden layer neurons are in a non-activate state. Therefore,
the optimization function of SAE is defined as

min
W,b

J (W,b) + β

d ′∑

j=1

KL(ρ||ρ̂j ) (8)

where d ′ is the dimensions of hidden layer, J (W,b) denotes
the optimization function of the typical AE network, ρ
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is a sparsity parameter whose value is generally tiny, and
KL(ρ||ρ̂j ) = ρ log( ρ

ρ̂j
) + (1 − ρ) log( 1−ρ

1−ρ̂j
) is the KL-

divergence that induces the output of hidden layer close to
the sparsity parameter ρ which is predefined. Besides, ρ̂j

can be formulated as

ρ̂j = 1

n

n∑

i=1

σ(wT
j X + b(1)

j )xi (9)

2.3.2 Label consistent auto-encoder

Label consistent auto-encoder (LCAE) which proposed by
Gogna et al. [14], is an approach for learning feature
representation in semi-supervised. The structure of LCAE is
a two-layer stacked auto-encoder network, and it is based on
the idea of how to gain an approximate inverse for a linear
problem, which can be formalized as

x′ = AT y = AT Ax (10)

where x′ is a noisy version of x, and x presents the practical
solution. LCAE focuses on seeking a linear mapping from
deepest layer of network to category labels, so as to form
the penalty about class-label consistency. Thus the objective
function of LCAE is defined as follows

min
W1,W1

′,W2,W2
′,D

∥
∥X − W1

′φ(W2
′φ(W2φ(W1X)))

∥
∥2

F

+λ ‖L − Dφ(W2φ(W1XS))‖2F (11)

where L is the labels, D is the linear map. And the weight
matrices of encoder and decoder in the first layer are W1

and W1
′, while W2 and W2

′ are the encoder and decoder
matrices in the second layer, respectively. X presents the
input data and part of it have labels while the rest are not.
Therefore X = [XU |XS], where XS is the data which have
supervised information.

2.3.3 Deep embedded clustering

Deep clustering is an emerging research field in recent
years. Different from the two-stage framework in a classic
way, deep clustering attempts to learn the low-dimensional
representation and cluster allocations simultaneously.

The deep embedded clustering method proposed by Xie
et al. [45] applied an auto-encoder network and defined a
clustering loss to learn the clustering allocations and low-
dimensional feature simultaneously. After the pre-training
process, DEC only reserve the encoder and discard the
decoder, then the encoder is fine-tuned according to the
defined loss function as follows

L = KL(P ‖ Q) =
∑

i

∑

j

pij log
pij

qij

(12)

where KL means the KullbackLeibler divergence, Q is
the soft labels distribution and P is the target distribution

produced from Q, their detailed definitions can be found
in [45]. In addition, the training process of DEC can be
considered as a self-training due to the relation of P and Q.

2.3.4 Improved Deep Embedded Clustering

Although the deep clustering method which aims to learn
the low-dimensional feature representation of inputs for the
clustering issue had obtained inspiring performance, Guo
et al. [17] noticed a shortcoming of the DEC method that it
lacks the consideration about the retention of local structure.
To this end, they proposed the improved deep embedded
clustering method (IDEC) to address this issue.

The core of IDEC is to keep the decoder of auto-
encoder network after the pre-training process instead of
discarding it like DEC. The retained decoder can provide the
reconstruction loss to guide the clustering task jointly with
the clustering loss, thereby avoiding the distortion of feature
space when only the clustering loss is applied. Hence the
objective function IDEC can be formalized as follows

L = Lr + γLc (13)

where γ is a coefficient which can control the degree of
distortion in feature space. If γ = 1 and Lr = 0, then
IDEC can be regarded as DEC method. Besides, Lr and Lc

are reconstruction loss and clustering loss, respectively. The
reconstruction loss Lr can be defined as

Lr = ∥
∥X − X′∥∥2

2 (14)

where X′ is the reconstruction of the input data matrix X.
And The clustering loss Lc is the same with (12).

3 Adversarial auto-encoder

Adversarial auto-encoder (AAE) is a probability-based
auto-encoder. It combines generative adversarial networks
(GAN) which is popular recently with variational auto-
encoder (VAE), and focuses on seeking out a discriminative
feature representation for high-dimensional data.

3.1 Architecture

In order to comprehend the architecture of AAE, we must
understand the structure of generative adversarial networks
(GAN) and auto-encoder (AE) firstly.

A typical auto-encoder network includes two phases: an
encoder and a decoder. The former focuses on learning
a subspace feature representation of inputs, while the
latter aims to reconstruct the inputs and minimize the
reconstruction error. The network structure of auto-encoder
which consists of three layers is shown in Fig. 1.
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Input layer

Hidden layer

Output layer

Encoder Decoder

Fig. 1 The network structure of auto-encoder. A typical auto-encoder
network usually comprises an input layer, a hidden layer, and an output
layer

With regard to GAN, the structure of it contains a gen-
erative network G and a discriminative network D, respec-
tively. A function D(x) used in the discriminative network
calculates the possibility that sample x is a positive sam-
ple that comes from the original data distribution, instead
of a negative sample that is produced by generator. Mean-
while, assume a sample z sources from the prior distribution
and a function G(z) is utilized to map z to the data space,
then a visualization about the structure of GAN is presented
in Fig. 2.

During the training procedure, we could leverage the
gradient of D(x) to train the generator G and revise its
parameters, while the aim of G(z) in training is to fool the

discriminative network D into trusting that the samples it
generates are positive samples as much as possible. This
process is formalized as follows

min
G

max
D

Ex∼pdata
[logD(x)] + Ez∼p(z)[log(1 − D(G(z))]

(15)

thus it is able to divide the training process into two phases
roughly. First, the discriminator D is trained to differentiate
the real samples from those fakes produced by generator
G, and the second is to make the samples produced by
generator G can confuse discriminator D through training.

The adversarial auto-encoder (AAE) network is a com-
bination of generative adversarial networks and variational
auto-encoder. The two training targets of AAE are: min-
imize reconstruction error and match the aggregated pos-
terior distribution of the representation in hidden layer to
an arbitrary prior distribution through an adversarial train-
ing. Assume an input data x and a hidden unit z of an
auto-encoder, the structure of AAE is presented in Fig. 3.

The upper part of this figure is an auto-encoder network
which first transforms the input data x into hidden vector z,
then reconstructs x from the hidden vector z. The encoder
of auto-encoder network can be considered as a generator.
The bottom part of this figure is a discriminative network
which is trained to distinguish a sample whether it is from
the hidden layer of auto-encoder network (fake sample), or
from the original data distribution (true sample).

3.2 Training strategy

Define the original data distribution as pdata(x), the
prior distribution as p(z), and the model distribution as
p(x). Meanwhile, we also define q(z|x) and q(x|z) as a
distribution of encoder and decoder, respectively. By the

Fig. 2 The structure of
generative adversarial networks.
The generative network aims to
generate fake samples that can
deceive the discriminative
network, while the
discriminative network puts
emphasis on enhancing its
ability to distinguish between
true and false samples through
training

Generative

network

Fake 

samples

(z)

True

samples

x
Discriminative

network
Predicted labels

1 real

0 fake-dimensional

noise vector z

: 
: 
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encoding function in encoder distribution q(z|x) , we can
define q(z) on hidden layer through the following formula

q(z) =
∫

x
q(z|x)pdata(x)dx (16)

where q(z) in hidden layer is an aggregated posterior distri-
bution. In the training process, one goal of AAE is to match
q(z) with p(z) to realize regularization. Consequently, AAE
adds an adversarial network in training, and considers the
encoder q(z|x) as a generator in the adversarial network.
From Fig. 3, it can be easily known that it is the adversar-
ial network that leads this process. In the meantime, another
goal of AAE is the minimization of reconstruction error
about auto-encoder network. The encoder guarantees that
the aggregated posterior distribution, q(z), could confuse
the discriminative network into trusting that q(z) comes
from p(z).

For the selection of encoder q(z|x) in AAE, there are
several possible methods: First is the deterministic method,
in this method we suppose q(z|x) as a deterministic function
of x, thus the randomness of q(z) only comes from the data
distribution pdata(x). The encoder can be considered the
same as the encoder of a typical auto-encoder. Another is the
universal approximator posterior method. In this method,
the origin of randomness about q(z) is the random noise
of encoder inputs and the data-distribution pdata(x). The
Gaussian posterior method is also a choice of encoder. We
suppose q(z|x) as a Gaussian distribution in this method,
and its means and standard deviations are computed by

encoder. Besides, the randomness of q(z) sources from the
stochasticity of the Gaussian distribution in the output of
encoder and the data-distribution pdata(x).

The main difference in the training process between AAE
and VAE is that in AAE, we only require to learn a sam-
pling from the prior distribution for inducing the process
of matching q(z) to p(z), while VAE demands to learn
the precise function of the prior distribution for the back-
propagation of KL divergence. Thus AAE could impose a
complex distribution without learning the precise function
of the prior distribution. In addition, there are also some dif-
ferences between AAE and GAN, for instance, AAE learns
to catch the data distribution through the training process
of auto-encoder network. However, for an output layer in
network, a pixel level data distribution is imposed by GAN
on it.

On the whole, each mini-batch training process of AAE,
including the auto-encoder and the adversarial network
which are trained jointly with SGD, can be separated
into a reconstruction stage and a regularization stage. In
the reconstruction stage, the auto-encoder aims at the
minimization of the reconstruction error for inputs, by
updating the parameters of encoder and decoder network, φ
and θ . Define objective function as follows

argmin
θ,φ

∥
∥x − x′∥∥2 (17)

where x′ is the reconstructed data. While in the regulariza-
tion stage, there have two aims in it. First, the adversarial

Fig. 3 A visualization of the
architecture of adversarial
auto-encoder. The upper half is
an auto-encoder, its encoder can
be considered as a generator,
while the bottom half is a
discriminative network

( z|x)

x

z~ z

Encoder Decoder

Draw samples

from ( z)
Input

Discriminator

+

−

GAN

VAE
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network differentiates the true samples that were produced
by the prior distribution, from those fake samples generated
in the hidden layer through updating its discriminator. Then
the generator in adversarial network is updated to fool the
discriminative network, and its objective function is simi-
lar to (15). The discriminator D(x) calculates the possibility
that sample x is a true sample which we attempt to model,
instead of a fake sample. While z is mapped by G(z) from
the prior distribution into the data space. The goal of G(z) is
to maximally fool the discriminative network through train-
ing, so as to force the discriminator to trust the samples
generated by it are true samples, and this training process of
G is realized by taking the advantage of the gradient ofD(x)
with regard to x. G also uses it to update its parameters.

The training procedure of adversarial auto-encoder is
presented at Algorithm 1.

4 Experimental analysis

In this section, we first present the eight tested image
data sets. Then illustrate the parameter settings for each
feature representation algorithm and evaluation metrics
used in experiment. After that, a number of comparative

experiments are performed to provide a comparison for
the low-dimensional discriminative feature learned via
adversarial auto-encoder with other feature representation
methods. Extensive experiments prove the efficiency of
adversarial auto-encoder.

4.1 Data sets

USPS is a popular subset of the USPS handwritten digit
database [35], it includes 9,298 handwritten images for a
total of 10 categories,1 and splits them into 7,291 images
for training and 2,007 images for testing. Each of them is
denoted as a feature vector with 256 dimensions.

Chars74K database consists of two different versions
(English and Kannada) [8]. The English version contains 62
different categories of images.2 It could be divided into three
parts: the first part is 7,705 characters acquired from natural
scenes, the second part is 3,410 hand-drawn characters gen-
erated by tablet PC, and the third part is 62,992 synthesized
character generated by computer fonts. In this paper, we
select the English version in our experiments. Apart from
this, we barely employ the third part of this database and
eliminate all numerals data. Thus the database applied in
experiment consists of 44,044 training samples and 8,788
testing samples with 52 categories where each image could
be stacked as a 1,024-dimensional feature vector.

Yale-B [6, 12] is a subversion of The Extended Yale Face
Database B.3 For this data set, we simply utilize the cropped
images and unify the size to 32×32 pixels for all images.
Each of them is denoted as a feature vector with 1,024
dimensions. This data set is now composed of 2,414 gray-
scale face images with 38 categories, and under 64 different
illuminations conditions per class.

ORL [5, 16] face database is a collection of 10 different
types of face images and each type of images contains 40
distinctive subjects.4 These images were obtained at varied
times on some subjects, differing the facial details and
expressions and the lighting. Every image is reshaped as a
1,024-dimensional feature vector.

COIL-20 data set is comprised of 20 objects in total [33],
and each object has 72 images.5 These images were gener-
ated by rotating the object on a turntable and producing at
intervals of 5 degrees. All images are gray-scale with the
size 32×32, and stacking as a 1,024-dimensional feature
vector.

CIFAR-10 database is composed of 60,000 colour
images, including 10 categories such as airplane, dog and

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html
2http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
3http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html
4http://www.uk.research.att.com/facedatabase.html
5http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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truck, etc. It is a subset gained from the 80 million tiny
images data set [27] and each category contains 6,000
images.6 We split the data into 50,000 images for training
and 10,000 images for testing, and each of them is reshaped
as a feature vector with 3,072 dimensions.

Fashion-MNIST is a data set which contains 60,000
samples for training and 10,000 samples for testing,
including 10 categories such as Trouser, Dress and Sneaker,
etc.7 [44]. Each example is a 28×28 gray-scale image, with
256 grey levels per pixel, and it could be denoted as a
784-dimensional feature vector.

SMSHP (Sebastien Marcel Static Hand Posture) data
set [29] consists of 6 different hand posture styles (v, a, b, c,
point, five).8 The categories in this database are generated
by the 6 hand postures. For convenience of experiment, the
size of all images is unified as 32×32 pixels, and each
of them could be reshaped as a feature vector with 1,024
dimensions.

The primary information of each data set aforemen-
tioned, including the amount of samples, features and
classes, are summed up in Table 1. In addition, we arbi-
trarily select 30 samples from every data set to provide a
visualization in Fig. 4.

4.2 Parameter settings

In order to prove the effectiveness of adversarial auto-
encoder (AAE) for unsupervised feature representation, sev-
eral unsupervised feature representation methods are intro-
duced to provide a comparison, including principal compo-
nent analysis (PCA), Isometric feature mapping (Isomap),
locality preserving projection (LPP), neighborhood pre-
serving embedding (NPE) auto-encoder (AE) and sparse
auto-encoder (SAE). Apart from this, we also take a semi-
supervised label consistent auto-encoder (LCAE) method
and two recently proposed deep clustering methods (deep
embedded clustering (DEC) and improved deep embedded
clustering (IDEC) ) into comparison, to show the effective-
ness of AAE.

Regarding the parameter settings, we illustrate the
architecture and training strategy about AAE in Section 3. In
the following experiment, a three layers AAE is employed,
the hidden layer units are set to {20, 40, 60, · · · , 200}, and
the number of training epochs is fixed as 1000. Apart
from this, the learning rate α is set as α = 0.001. With
regard to PCA, the only parameter of it is the subspace
dimensions. For Isomap, LPP and NPE, they search their
neighbors by utilizing the kNN method, the amount of their
nearest k neighbors is fixed to 20, and if a singular matrix

6http://www.cs.toronto.edu/∼kriz/cifar.html
7https://github.com/zalandoresearch/fashion-mnist
8http://www.idiap.ch/resource/gestures/

Table 1 A concise illustration about the tested data sets applied in
experiments

ID data sets # samples # features # classes

1 USPS 9,298 256 10

2 Chars74K 52,832 1,024 52

3 Yale-B 2,414 1,024 38

4 ORL 400 1,024 40

5 COIL-20 1,440 1,024 20

6 CIFAR-10 60,000 3,072 10

7 Fashion-MNIST 70,000 784 10

8 SMSHP 5,531 1,024 6

with the size of k × k appears, k will be reset to a larger
one to solve this problem. For AE, SAE and LCAE, the
parameters of them including learning rate α and training
epochs, are identical to the settings of AAE. Besides, the
range of subspace dimensions about all compared feature
representation methods is all set to {20, 40, 60, · · · , 200},
unanimous to AAE. For the two deep clustering methods
(DEC and IDEC), the performance of DEC and IDEC in
USPS data set are obtained from the original paper [17], and
for other data sets, we train them with the same parameter
settings. The network structure of DEC and IDEC is fixed as
d-500-500-2000-10 dimensions and the learning rate is set
as α = 0.001. Also, the pre-training iterations are set to 200
and the coefficient γ is set as γ = 0.1 after pre-training.

After all feature representation methods are performed,
the low-dimensional features learned by them are assessed
by K-means clustering method. The process of dimension-
ality reduction and K-means clustering for AAE is sum-
marized in Fig. 5. The main trouble in assessing the effec-
tiveness of unsupervised and semi-supervised approaches
is the missing of supervised information. In the absence
of complete supervised information, it is difficult to seek
for the corresponding relation between predictive labels
and ground truths after clustering. With a few searches
and selections, we finally select three evaluation metrics,
which are popular recently, including clustering accuracy
(ACC), normalized mutual information (NMI) and adjusted
rand index (ARI), to evaluate the performance of K-means
method. In addition, for different initial values, the per-
formance of K-means fluctuates greatly, it mainly due to
its high sensitivity. Thus we repeat it 10 times then record
their means and standard deviations. The higher scores of
ACC, ARI and NMI in K-means method indicate the better
performance.

4.3 Evaluationmetrics

After learning the subspace feature with low dimension by
those feature representation methods, we assess their quality
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Sample images of Yale-B Sample images of USPS

Sample images of ORL Sample images of SMSHP

Sample images of Fashion-MNIST Sample images of Chars74K

Sample images of CIFAR-10 Sample images of COIL-20

Fig. 4 A visualization of data sets utilized in experiment, we arbitrarily select 30 images from each database for display

through K-means clustering. With regard to AAE, AE, SAE
and LCAE, we obtain the subspace representation of them
in the hidden layer, as presented in Fig. 5.

As mentioned above, it is difficult to seek out a corre-
sponding relation between the labels predicted by K-means
method and the ground truths without the guidance of
supervised information. Thus in performance evaluation,
we suppose the information of true class labels for data sets
is available, though at the unsupervised situation. In the fol-
lowing, the definition of ACC, ARI and NMI is introduced.

4.3.1 Clustering accuracy

Define {xi}ni=1 as the data points, {yi}ni=1,
{
ŷi

}n

i=1 as the
labels of ground truths and the predictive labels of K-means
clustering, respectively. From this, ACC can be formalized
as follow

ACC =
∑n

i=1 δ(yi , map(ŷi ))

n
(18)

where map(·) is a permutation mapping which could best
match the labels of K-means clustering with the labels of
ground truths. Besides, δ(yi , map(ŷi )) = 1 when yi =
map(ŷi ), as for other cases, δ(yi , map(ŷi )) = 0.

4.3.2 Adjusted rand index

Assume T = {
Tj

}t

j=1 stands for the ground truths,
C = {Ci}ci=1 stands for the clustering result. ARI com-
putes the resemblance between two clustering samples, the
contingency table regards to C and T is represented as
follows
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Fig. 5 The process of dimensionality reduction and K-means clus-
tering on AAE. Through encoding, a d-dimensional original data is
denoted as a feature vector with d ′ dimensions in the hidden layer, then

adopt it as the input of K-means method. Finally, the clustering perfor-
mance is assessed by three popular evaluation metrics including ACC,
ARI and NMI

where nij = ∣
∣Ci ∩ Tj

∣
∣, hence, ARI (C,T) can be defined

according to the contingency table.
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4.3.3 Normalized mutual information

With regard to NMI, define di as the amount of flows in
category i, cj as the amount of flows in category j , and di,j

as the amount of flows both in category i and category j ,
then NMI is able to be calculated as follows

NMI =
∑

di,j log(
|�|.di,j

dicj
)

√
(
∑

i di log(
di

d
))(

∑
j cj log(

cj

d
))

(20)

where NMI is based on the metric mutual information(MI),
the value of denominator indicates the information entropy,
and the value of numerator is MI. The value of NMI is range
from 0 to 1.

Due to the high sensitivity of K-means clustering, it
will be performed 10 times repeatedly to receive their
means and standard deviations as the final evaluation
result of our experiments. The higher scores of ACC,
ARI and NMI denote the better performance for K-means
clustering.

4.4 Experimental visualization

The main target of unsupervised feature representation
methods is to seek for a subspace representation which
could well represent the feature of original data, without the
guidance of supervised information. In this subsection, we
provide a concise visual experimental result for each feature
representation algorithm used in experiments.

Taking the data set COIL-20 as an instance, part
of aforementioned feature representation algorithms are
selected to be performed to reduce the dimensions of it
into 2. Then executing K-means clustering for each low-
dimensional feature learned by them, and visualize the
result as Fig. 6.

From this figure, we can roughly offer an intuitive
comparison about the performance of image clustering for
adversarial auto-encoder and other feature representation
methods. The goal of clustering is to join the points in a
same category close to each other as much as possible, while
separating the points in different categories. The clustering
result of adversarial auto-encoder outperforms the other
compared algorithms clearly, it can join the points which
have the same label more closely, while separating the
points in different categories relatively better. The favorable
performance of adversarial auto-encoder may be due to
the added adversarial network during its training process,
it takes encoder as its generator, and induces encoder to
generate a sample to confuse the discriminative network
into trusting this sample is a true sample, the discriminative
learning process motivates encoder to generate a better
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PCA NPE LPP Isomap

AE AAESAE LCAE

Fig. 6 A concise visualization of feature representation on COIL-20
data set, part of aforementioned algorithms are selected to performed
to reduce the dimensions of original input data into 2, then we execute

K-means clustering for each low-dimensional feature representation
learned, and visualize the result in this figure

sample in every iteration of training. Hence, the low-
dimensional feature representation generated by encoder
can still represent the original data well.

Other than this, for the discriminative feature learned
by AAE, we also provide a brief visualization in Fig. 7,
the reconstructed images come from the discriminative
feature obtained in the hidden layer. We can notice that the
result of reconstructed images is not encouraging after 10
iterations from this figure. When the number of iterations
exceeds 100, we can obtain a relatively ideal result of
reconstructed images, which demonstrates the efficiency of
the discriminative feature learned from AAE and its ability
to accelerate the convergence process of the network.

4.5 Experimental result

In this subsection, comprehensive experiments are car-
ried out. We choose the K-means method to compare
the image clustering performance between AAE and other
feature representation methods including PCA, LPP,
Isomap, NPE, AE, SAE, and LCAE. In particular, for
demonstrating the high efficiency of the learned discrim-
inative feature representation, we also compared with
DEC and IDEC, which are two recently proposed deep
clustering methods. Then, three popular evaluation metrics
consisting of ACC, ARI, and NMI are selected to assess
their performance. Besides, the raw data of each data set is

Input images AAE after 10 epochs AAE after 100 epochs 

Fig. 7 A brief visualization for the discriminative feature learned by
AAE. We first reduce the dimensions of Fashion-MNIST data sets into
200 to learn a discriminative feature representation, then reconstruct it

to make this visualization. So as to prove the fast convergence of AAE,
we provide a intuitive comparison from the reconstructed images after
10 and 100 iterations
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Table 2 Clustering accuracy obtained by applying different feature representation approaches. The results (mean% + std%) shown in red and
blue mean the best two performance. The symbol “—” denotes that the scores and source codes of these algorithms in corresponding data set
were not available

performed image clustering directly to obtain the baseline
in our experiments.

The K-means performance of all compared feature
representation approaches in these eight image data sets are
displayed in Tables 2, 3 and 4. The performance of each
method can be appraised through comparing the scores of
three metrics between the learned low-dimensional feature
and the baseline. From the three tables, it is intuitive to
notice that the feature representation methods are mostly
superior to the traditional k-means clustering in all tested
data sets, and in most image data sets, AAE is better than
other compared feature representation methods in clustering
performance. In Table 2, AAE ranks first at clustering
accuracy on seven image data sets and second on two
image data sets. Especially in the COIL-20 database, the
discriminative feature learned by AAE reaches a favorable

performance. The clustering accuracy of AAE in this data
set is 76.3%, and the baseline is 57.8%, with an 18.5%
advancement. While the second-best performance is the
LPP method, its clustering accuracy is 68.8%, AAE exceeds
it more than 7%.

Moreover, AAE still obtains encouraging results in the
scores of ARI and NMI. In Tables 3 and 4, the scores
of AAE are also very competitive. Furthermore, in com-
parison with the semi-supervised LCAE method and deep
clustering methods DEC and IDEC, AAE also achieves
a better performance. Nevertheless, other methods also
perform well on some data sets. For instance, NPE ranks
first on three metrics of the data set ORL. LPP and Isomap
show their favorable performance in the data set Yale-B.
DEC and IDEC are also very competitive on USPS and
Chars74K.

Table 3 Adjusted rand index obtained by applying different feature representation approaches. The results (mean% + std%) shown in and
mean the best two performance. The symbol “—” denotes that the scores and source codes of these algorithms in corresponding data set

were not available
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Table 4 Normalized mutual information obtained by applying different feature representation approaches. The results (mean% + std%) shown in
and mean the best two performance. The symbol “—” denotes that the scores and source codes of these algorithms in corresponding data

set were not available

USPS Chars74K Yale-B  ORL

COIL-20 CIFAR-10  Fashion-MNIST SMSHP 
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Fig. 8 The influence about different numbers of hidden layers on the clustering accuracy scores of AAE, the numbers of hidden layers is set as
{20, 40, 60, · · · , 200}
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Fig. 9 The influence about different numbers of hidden layers on the adjusted rand index scores of AAE, the numbers of hidden layers is set as
{20, 40, 60, · · · , 200}
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Fig. 10 The influence about different numbers of hidden layers on the normalized mutual information scores of AAE, the numbers of hidden
layers is set as {20, 40, 60, · · · , 200}

In particular, for demonstrating the influence about
different numbers of hidden layers on the clustering
performance of AAE, the fluctuations about the scores
of three metrics with the numbers of hidden layers are
shown in (Figs. 8, 9 and 10). To preserve the original
feature after the reduction of dimensions is an arduous
task, a low-dimensional feature that can well represent the
original data is able to gain higher scores in experiments.
Overall, the clustering results indicate that AAE obtains
a competitive clustering performance in unsupervised
learning, and comprehensive experiments demonstrate the
effectiveness of learned feature representation via AAE in
the tested data sets.

5 Conclusion and further discussion

An unsupervised adversarial auto-encoder was applied to
learning a discriminative feature representation for image
data in this paper, and the learned feature was evalu-
ated by K-means clustering. Extensive experiments showed
that adversarial auto-encoder obtained a competitive per-
formance in image clustering. The discriminative feature
learned by it could well represent the original feature after
appropriate iterations. Compared to other feature represen-
tation methods, the added discriminative process led the
adversarial auto-encoder to be more robust. However, when
the categories increase, the clustering performance may
suffer from a bottleneck without any guidance of label infor-
mation. Thus in further work, we will focus on how to add
weakly label information during the feature learning pro-
cess, to break through this bottleneck. Besides, we will also
put more emphasis on the network structure improvement
about adversarial auto-encoder which may further enhance
the network performance.

Acknowledgments This work was partially supported by the Tech-
nology Innovation Platform Project of Fujian Province under Grant
(Nos. 2014H2005 and 2009J1007), the National Natural Science Foun-
dation of China (Nos. 61502104 and 61672159), the Fujian Collab-
orative Innovation Center for Big Data Application in Governments,
the Fujian Engineering Research Center of Big Data Analysis and
Processing.

References

1. Balasubramanian M, Schwartz EL (2002) The isomap algorithm
and topological stability. Science 295(5552):7–7

2. Bao S, Song X, Hu G, Yang X, Wang C (2017) Colour face
recognition using fuzzy quaternion-based discriminant analysis.
International Journal of Machine Learning and Cybernetics,
pp 1–11

3. Barone AVM (2016) Towards cross-lingual distributed represen-
tations without parallel text trained with adversarial autoencoders.
ACL 2016:121

4. Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral
techniques for embedding and clustering. In: Advances in Neural
Information Processing Systems, pp 585–591

5. Cai D, He X, Han J, Zhang HJ (2006) Orthogonal laplacianfaces
for face recognition. IEEE Trans Image Process 15(11):3608–
3614

6. Cai D, He X, Hu Y, Han J, Huang T (2007) Learning a spatially
smooth subspace for face recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition

7. Cui Z, Li F, Zhang W (2018) Bat algorithm with principal
component analysis. International Journal of Machine Learning
and Cybernetics, pp 1–20

8. De Campos TE, Babu BR, Varma M et al (2009) Character
recognition in natural images. International Conference on
Computer Vision Theory and Applications 7(2):273–280

9. Denton EL, Chintala S, Fergus R et al (2015) Deep generative
image models using a laplacian pyramid of adversarial networks.
In: Advances in Neural Information Processing Systems, pp 1486–
1494
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