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a b s t r a c t 

Deep clustering aims to promote clustering tasks by combining deep learning and clustering together 

to learn the clustering-oriented representation, and many approaches have shown their validity. How- 

ever, the feature learning modules in existing methods hardly learn a discriminative representation. In 

addition, the label assignment mechanism becomes inefficient when dealing with some hard samples. 

To address these issues, a new joint optimization clustering framework is proposed through introducing 

the contractive representation in feature learning and utilizing focal loss in the clustering layer. The con- 

tractive penalty term added in feature learning would cause the local feature space contraction, resulting 

in learning more discriminative features. To our certain knowledge, this is also the first work to utilize 

the focal loss to improve the label assignment in deep clustering method. Moreover, the construction of 

the joint optimization framework enables the proposed method to learn feature representation and la- 

bel assignment simultaneously in an end-to-end way. Finally, we comprehensively compare with some 

state-of-the-art clustering approaches on several clustering tasks to demonstrate the effectiveness of the 

proposed method. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

As a classic research field of artificial intelligence, clustering 

as been widely studied in recent decades, and its applications 

over many aspects, such as text data analysis [1] , image segmen- 

ation [2] and object detection [3] , etc. The target of clustering is 

o divide the samples that are similar to each other into the same 

ategory, while separating different categories as much as possi- 

le. In the past few decades, numbers of classic clustering tech- 

iques have been proposed, such as k -means, Mean-shift and DB- 

CAN, etc. Although classical clustering methods have obtained a 

ot of achievements, their disadvantages have become increasingly 

pparent in time and space costs with the explosive growth of data 

imensions in recent years. 

To address this issue, researchers first proposed applying fea- 

ure representation methods, such as principle components anal- 

sis (PCA), non-negative matrix factorization (NMF), and auto- 

ncoder (AE) to facilitate the clustering tasks. Through mapping 

he original data into a low-dimensional feature space, the feature 

epresentation methods can significantly save time and space costs. 
∗ Corresponding author. 
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or instance, Alzate et al. [4] took advantage of weighted kernel 

CA to propose a new multi-way spectral clustering method, and 

mproved the performance in terms of computation times. Zheng 

t al. [5] proposed an effective tumor clustering approach by using 

MF and its extensions, and achieved encouraging clustering per- 

ormance on several gene expression data sets. Tian et al. [6] ap- 

lied a stacked auto-encoder to extract the non-linear embedded 

eatures for the initial graph, then executed the k -means algorithm 

nd acquired clustering results. Dang et al. [7] improved the deep 

ubspace clustering framework through introducing a new multi- 

cale fusion model and a similarity constraint model to promote 

he learning of a more representative self-expression coefficient 

atrix. 

In recent years, the framework that considers both feature rep- 

esentation learning and clustering tasks has been widely studied, 

.e., deep clustering [8–10] . Through the practical experiments of 

ost researchers, it has been proved that deep learning can ben- 

fit clustering tasks. For example, by applying an auto-encoder to 

xtract the embedded features of inputs and designing a cluster- 

ng layer, Xie et al. [11] proposed deep embedded clustering (DEC) 

o improve the clustering performance. Then Guo et al. [12] dis- 

overed the drawbacks of DEC that did not consider preserving 

he local structure, and proposed improved deep clustering method 

https://doi.org/10.1016/j.patcog.2021.108386
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108386&domain=pdf
mailto:guowenzhong@fzu.edu.cn
https://doi.org/10.1016/j.patcog.2021.108386
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Fig. 1. Illustration of the network structure of our method. The upper part is the contractive representation learning module, whose objective is represented by L crl . A 

Jacobian penalty term is imposed in the hidden layer, which causes the local feature space contraction, resulting in learning more discriminative features. The lower part 

is the clustering module, in which a soft labels distribution and a target distribution are generated to measure the objective L c . By taking advantage of the self-training in 

our network to treat the target distribution in the clustering layer as the real labels distribution, the focal loss is introduced into our clustering module and employed in an 

unsupervised manner. The proposed method jointly optimizes these two modules to learn the clustering-oriented representation in an end-to-end way. 
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IDEC) to ameliorate DEC method by keeping the decoder in net- 

ork structure to prevent the distortion of feature space. Yang 

t al. [13] designed a dual auto-encoder network to enforce a re- 

onstruction constraint on embedded features in the latent layer, 

o as to realize the joint optimization of the discriminative em- 

edding learning and spectral clustering. 

However, the existing deep clustering methods still have some 

hallenging issues that are worth investigating. For example, the 

eature learning modules such as those in DEC and IDEC hardly 

earn a discriminative representation, and some recent studies [14–

6] have proved that a discriminative feature representation can 

ignificantly promote clustering. In addition, the label assignment 

echanism in existing deep clustering methods becomes ineffi- 

ient when dealing with some hard samples. Specifically, we found 

mpirically that some samples are always misclassified in the clus- 

ering layer, which we called them hard samples, and this may 

e the reason for limiting the further improvement of clustering 

erformance. Therefore, how to effectively mine these hard sam- 

les is a promising issue. Inspired by the remarkable achievements 

f focal loss in the field of image classification and object detec- 

ion [17,18] , we consider the potential of focal loss on mining hard 

amples may help to improve the label assignment mechanism in 

he existing clustering framework. 

In this paper, a new clustering framework namely deep cluster- 

ng with contractive representation learning and focal loss (DCCF) 

s proposed to solve the aforementioned issues. The proposed 

ethod is a joint optimization framework that can learn the fea- 

ure representation and label assignment simultaneously in an 

nd-to-end manner. Fig. 1 illustrates its network structure. First, 

o learn the more effective features, we introduce the contractive 

epresentation learning [19] in our method. Specifically, a penalty 

erm of the Frobenius norm of the Jacobian matrix is added in 

ur representation learning module, which will cause the local fea- 

ure space contraction, resulting in learning more discriminative 

eatures. Second, we adopt focal loss in our clustering module to 

elp improve the label assignment mechanism. However, it is well 

nown that the focal loss is commonly applied in supervised learn- 

ng scenarios since it requires real labels. Therefore, the most chal- 

enge in implementation is how to embed focal loss in an unsuper- 

ised clustering framework. Faced with this issue, we take advan- 

age of the self-training in our network to treat the target distribu- 

ion in the clustering layer as the real labels distribution, and thus 
S

2 
esign a mechanism to apply focal loss in an unsupervised man- 

er. To our certain knowledge, the proposed DCCF method is the 

rst work to introduce the focal loss to data clustering tasks. Then, 

e carry out comprehensive experiments to assess the proposed 

ethod. To be specific, we compare the proposed DCCF method 

ith some prevalent clustering methods in several clustering tasks, 

ncluding the clustering on handwritten digits, real-world images 

nd text. The experimental results indicate that DCCF has remark- 

ble advantages over other comparative approaches and achieves 

tate-of-the-art clustering performance. Moreover, we further dis- 

uss the feasibility of large-scale clustering, as well as the ablation 

tudy, parameter sensitivity analysis and convergence analysis of 

ur method. The overall experiments demonstrate the effectiveness 

f our method. 

The main contributions of our work are summed up as follows: 

• Propose an end-to-end clustering framework that learns em- 

bedded representation and implements clustering simultane- 

ously. The two components of the framework can mutually pro- 

mote learning clustering-oriented representation. 
• Improve the representation learning module by introducing the 

contractive penalty term, which forces the local feature space 

contraction, leading to capture more discriminative representa- 

tion. 
• Design a mechanism to embed focal loss into the clustering 

framework in an unsupervised manner by exploiting the target 

distribution generated in the clustering layer. This is also the 

first work that employs focal loss to improve the label assign- 

ment in deep clustering. 
• Demonstrate the superiority of the proposed method in com- 

parison with several state-of-the-art clustering approaches on 

seven publicly available data sets. 

The structure of this paper is described as follows. First, in 

ection 2 , we briefly review some related works on deep cluster- 

ng and focal loss. Second, the architecture, training strategy and 

mplementation details of the proposed method are illustrated in 

ection 3 . Then, in Section 4 , extensive experiments are conducted 

o evaluate the effectiveness of our method, including the com- 

arison with other popular clustering approaches, the feasibility 

f large-scale clustering and some discussions of ablation study 

nd parameter sensitivity. Eventually, we summarize the paper in 

ection 5 . 
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. Related works 

In this section, we briefly present some related researches on 

eep clustering and focal loss, which are the foundations of our 

ork. 

.1. Deep clustering 

Deep clustering [20,21] can be partitioned into two forms, 

hich aims to take advantage of deep learning to help im- 

rove clustering. The first form is the two-stage clustering frame- 

ork, which separates the two processes of representation learn- 

ng and clustering. Because of the powerful representation learn- 

ng capability of deep neural networks, the learned representa- 

ion can remove redundant features of the original data and map 

he data with high dimension into low-dimensional feature space, 

hereby improving the efficiency and performance of clustering 

asks. Bharti et al. [22] integrated the feature extraction and fea- 

ure selection to propose a new clustering method for text clus- 

ering. Zhu et al. [23] combined the subspace clustering and unsu- 

ervised feature selection to propose a new clustering framework, 

nd the learned features can well retain the cluster labels thereby 

mproving the clustering performance. Peng et al. [14] introduced 

he L2-graph to develop a new subspace clustering method which 

an remove the influence of the errors from representation. Yang 

t al. [24] introduced an effective relaxation constructed by � 2 , 1 - 

orm distance to improve the graph cut clustering algorithm, 

hich can yield the more sparse representation to maintain a 

learer clustering structure. 

Another form of deep clustering is the combination of repre- 

entation learning and clustering, whose target is to allow the net- 

ork to learn a cluster-oriented representation. Xie et al. proposed 

he deep embedded clustering approach [11] to accomplish fea- 

ure representation learning and clustering tasks simultaneously. 

u et al. [25] proposed a new joint optimization multi-view clus- 

ering method to overcome the drawback that the high dimension- 

lity of each view of data. Yang et al. [26] developed an effective 

dversarial attack method to apply adversarial learning into differ- 

nt types of deep clustering models, thereby improving their ro- 

ustness. Dang et al. [27] proposed to achieve the matching of 

amples and their nearest neighbors from two perspectives, i.e., 

ocal and global, thus improving the clustering performance by 

xploiting both local and global features. Based on empirical ev- 

dence, compared to the two-stage clustering methods, the joint 

ptimization framework is more conducive to the clustering tasks 

ue to its specifically set loss term for clustering. 

.2. Focal loss 

Focal loss [17,28] was proposed to address the problem of seri- 

us imbalance between the positive and negative sample ratios in 

ne-stage target detection, and can also be understood as a hard 

ample mining approach. For binary classification case, we let p

nd y denotes the predicted label and true label respectively, and 

efine p t as follows: 

p t = 

{
p if y = 1 , 

1 − p otherwise, 
(1) 

hen the cross entropy loss (CEloss) can be written as 

Eloss (p, y ) = CEloss (p t ) = − log (p t ) . The idea of focal loss is

o add a modulating factor on the basis of CEloss, and it could be

ormalized as follows: 

 L (p t ) = −(1 − p t ) 
γ log (p t ) , (2) 

here (1 − p t ) 
γ indicates the modulating factor, and γ is a tun- 

ble focusing parameter that satisfies γ ≥ 0 . 
3 
In recent years, focal loss has been widely applied in the fields 

f object detection and image classification. Lin et al. [17] utilized 

he focal loss to train a dense detector, namely RetinaNet, which 

chieved encouraging detection accuracy. Shu et al. [18] solved the 

ssue of the category imbalance during training by applying focal 

oss in their proposed neural network, and realized higher perfor- 

ance on the task of breast cancer classification. In view of the 

uccess of focal loss in the above fields, we believe that the poten- 

ial of focal loss in clustering tasks is also worthy of investigation 

nd discussion, which is also the main motivation of our work. 

. Proposed method 

In this section, the framework of the proposed DCCF method 

s first introduced. Specifically, we describe in detail the contrac- 

ive representation learning module, the construction of clustering 

ayer and how they jointly optimize. Thereafter, the implementa- 

ion details of the proposed method will be presented. 

.1. Contractive representation learning module 

Define X ∈ R 

d×n as the input data set, where n indicates the 

umber of samples and d denotes the dimension of data point. 

he objective of our method is to divide each sample x i ∈ X into

he correct cluster as much as possible without the ground-truth 

abel information. For the purpose, we design a new deep cluster- 

ng framework to execute clustering in an end-to-end joint opti- 

ization way. To be specific, the framework is composed of two 

ain modules. One is the feature learning module which utilizes 

he contractive representation learning to obtain more discrimina- 

ive features, and the other module is an improved clustering layer 

hich introduces the focal loss in data clustering to mine the hard 

amples. 

The basic idea of feature learning in deep clustering is to apply 

n auto-encoder to capture the embedded representation of orig- 

nal data. The typical auto-encoder consists of an encoder and a 

ecoder. By using non-linear transformation, the encoder projects 

he original data X into a embedded representation H ∈ R 

d ′ ×n with 

 

′ dimensions, which is the so-called embedded feature. Since the 

mbedded feature h i ∈ H corresponds to data point x i ∈ X , the en-

oder can be formulated as follows: 

 i = f (x i | W e , b e ) = f (W e x i + b e ) , (3) 

here f (·) denotes the activation function of encoder, W e ∈ R 

d ′ ×d 

nd b e ∈ R 

d ′ are the weight matrix and bias of encoder network 

espectively. Similarly, the decoder aims to project the embedded 

eature H back to the reconstructed data X 

′ ∈ R 

d×n as the following 

ormula: 

 

′ 
i = g(h i | W d , b d ) = g(W d h i + b d ) , (4) 

here g(·) , W d ∈ R 

d ×d ′ and b d ∈ R 

d are defined similarly to the en-

oder. Therefore, the objective of auto-encoder is to find a mapping 

o minimize the reconstruction error as follows: 

in 

�

∥∥X − X 

′ ∥∥2 

F 
, (5) 

here � = ( W e , W d , b e , b d ) denotes the parameters of auto- 

ncoder network. 

However, it will lead to the perturbations of intermediate rep- 

esentation if the training only guided by the reconstruction er- 

or in feature learning. To capture the more effective feature rep- 

esentation, we propose to introduce the Frobenius norm of Jaco- 

ian matrix J(x ) as a penalty term in feature learning. Fig. 2 shows

he architecture of the contractive representation learning module. 

pecifically, the penalty term J(x ) aims to penalize the sensitivity 
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Fig. 2. Structure of the contractive representation learning module. A contractive 

regularization term is imposed on the embedded layer, which can produce discrim- 

inative embedded features for our clustering module. 
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o input data, which can be defined as follows: 

 

J(x ) ‖ 

2 
F = 

∑ 

i, j 

(
∂h j (x ) 

∂x i 

)2 

. (6) 

For the embedded features relative to the dimension of in- 

uts, ‖ J(x ) ‖ 2 F represents the summary of squares of all their par- 

ial derivatives. Considering that the flatness caused by the first 

erivative with low-value indicates the robustness or invariance 

f the feature representation for the small alterations of inputs, 

enalizing the term ‖ J(x ) ‖ 2 F can help the mapping in representa- 

ion learning to be contractive near to the input data space. Conse- 

uently, the loss function of the contractive representation learning 

odule can be formalized as follows: 

 crl = 

∑ 

x ∈ X 

∥∥x − x 

′ ∥∥2 

F 
+ λ‖ 

J(x ) ‖ 

2 
F , (7) 

here λ is the parameter that controls the degree of contractive 

egularization. The contractive representation learning module will 

esult in the contraction of local feature space in turn produce dis- 

riminative embedded features for our clustering module. 

.2. Clustering modules 

An essential part of deep clustering method is the clustering 

ayer, and the embedded feature H obtained from the contractive 

eature learning is used as its input. The structure of our clustering 

odule is presented in Fig. 3 , which will be described in detail 

elow. 

.2.1. Clustering loss construction 

Clustering aims to accurately divide a given set of data points 

nto a specified number of categories. With the help of contractive 

eature learning and defined clustering layer, the effectiveness of 

he division can be improved. In the clustering layer, we use the 

L-divergence between soft labels distribution S and target distri- 

ution T to define the clustering loss, as shown below: 

 cl = KL (T || S) = 

∑ 

i 

∑ 

j 

t i j log 
t i j 

s i j 

. (8) 

he soft labels distribution S that calculate the resemblance of a 

epresentation h i in the embedded layer and a cluster centroid μ j 

s defined by utilizing Student’s t -distribution as follows: 

 i j = 

(1 + 

∥∥h i − μ j 

∥∥2 
/α) −

α+1 
2 

∑ 

j (1 + 

∥∥h i − μ j 

∥∥2 
/α) −

α+1 
2 

, (9) 

here the parameter α controls the extent of freedom of Student’s 

 -distribution. Specifically, α is fixed to 1. Therefore, s i j represents 

he probability of allocating example i to cluster centroid j, called 
4 
oft label assignment. And the target distribution T is formalized 

s: 

 i j = 

s 2 
i j 
/ 
∑ 

i s i j ∑ 

j s 
2 
i j 
/ 
∑ 

i s i j 

, (10) 

here t i j is defined by s i j , and the intent of optimization is to 

atch S with T , thus we can regard it as a kind of self-training. 

.2.2. Clustering with focal loss 

In practical experience, we have found that there are some 

ard, misclassified samples if the clustering layer only guided by 

q. (8) . To address this issue, we proposed to introduce focal loss 

o improve the label assignment mechanism in our clustering mod- 

le. 

Since our clustering task is usually in a multi-class case, we 

eed to modify Eq. (2) in Section 2.2 to adapt it to this demand.

pecifically, we redefine p t as follows: 

p t = y pred ∗ y true , (11) 

here y pred and y true are the predicted label and true label in the 

ulti-class case, respectively. 

In general, true labels are required in this situation, but this 

urns to be a supervised learning, which is inconsistent with our 

lustering tasks. Fortunately, as mentioned in Section 3.2.1 , the soft 

abels distribution S and target distribution T produced in our clus- 

ering module provide us with a direct solution to this problem. To 

e specific, the predicted labels are generated from S and the true 

abels are generated from T , thus we can straightly impose the fo- 

al loss in the clustering layer during its self-training, and the ob- 

ective can be formalized as follows: 

 f l = −(1 − p t ) 
γ log (p t ) . (12) 

According to the definition of l f l , we can know that for an easy 

ample, the probability (1 − p t ) is small and p t is close to 1. For a

ard sample, the probability (1 − p t ) is large and p t is close to 0,

hich means the focal loss can increase the contribution of hard 

amples in loss function, while reducing the contribution of easy 

amples in loss function. Therefore, the objective function L c of our 

lustering module can be formalized as: 

 c = l cl + l f l , (13) 

here l cl enables the network to realize clustering in a self-training 

anner, and l f l attempts to address the issue that some hard sam- 

les is difficult to mine when only l cl is used in the clustering 

odule. 

.3. Training strategy 

Through the contractive representation learning module and 

lustering module defined above, the objective function of the joint 

ptimization network can be formalized as follows: 

 = L crl + βL c , (14) 

here β controls the contribution of the clustering layer loss to 

he total loss. 

During the training progress, we jointly optimize the param- 

ters of contractive auto-encoder network and the cluster cen- 

roid μ j by utilizing stochastic gradient descent (SGD) and back- 

ropagation (BP). Specifically, let ρ denotes the learning rate and 

 represents the number of samples in a mini-batch, the cluster 

entroid μ j is updated as follows: 

j = μ j −
ρ

m 

m ∑ 

i =1 

∂L c 

∂μ j 

, (15) 
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Fig. 3. Illustration of our clustering module. The learned embedded representation in contractive feature learning are used as the input, resulting in the soft labels distribu- 

tion S and target distribution T . l cl represents the KL-divergence between S and T , known as clustering loss. l f l indicates the focal loss, where S and T are used to generated 

the predicted labels and true labels respectively, which allows us to utilize focal loss in our module in an unsupervised manner. 
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nd the weights W e and W d of our contractive feature learning 

odule are updated by: 

 d = W d −
ρ

m 

m ∑ 

i =1 

∂L crl 

∂W d 

, (16) 

 e = W e − ρ

m 

m ∑ 

i =1 

( 
∂L crl 

∂W e 
+ β

∂L c 

∂W e 
) . (17) 

Furthermore, the target distribution is regarded as true label in 

ur clustering module, which is relied on the soft labels distribu- 

ion and update by Eq. (10) . Consequently, the label c i is assigned 

o sample x i according to the following formula when updating the 

arget distribution: 

 i = arg max 
j 

s i j , (18) 

nd the training procedure of the proposed method is shown at 

lgorithm 1 . 

lgorithm 1 Algorithm of DCCF. 

nput : Original data matrix X ∈ R 

d×n , pre-training weights, num- 

er of clusters K, parameter β , interval for update O and stopping 

hreshold δ. 

utput : The embedded representation H and the predicted cluster 

abels C. 

1: Initialize the set of cluster centroid μ, and import the pre- 

trained encoder weights W e and decoder weights W d to ini- 

tialize the network; 

2: while not converged do 

3: if epoch % O == 0 then 

4: Extract the embedded feature H from the contractive rep- 

resentation learning module; 

5: Update target distribution T in the clustering module 

through the learned H and Equations 9,~10; 

6: Save the current label assignment C as C old , and compute 

the new label assignment C by Equation 18; 

7: end if 

8: Select m samples from the input data matrix X to form a 

batch X 

′ 
; 

9: Calculate the loss of contractive representation learning L crl 

and clustering netowrk L c ; 

0: Update the cluster centroid μ, decoder weight W d and en- 

coder weight W e by Equations 15,~16 and~17, respectively. 

11: end while 

2: return The predicted cluster labels C. 

The proposed DCCF method consists of two modules, i.e, the 

ontractive representation learning module and clustering module. 

herefore, the complexity of DCCF is O (nD 

2 
m 

+ nd ′ K) , where D m 

ndicates the maximum size of the hidden layers, n denotes the 

umber of data, d ′ represents the dimensions of the embedded 

ayer connected to the clustering module, and K is the number of 

lusters. Furthermore, as we have the condition K ≤ d ′ ≤ D m 

holds, 
5 
he complexity of DCCF can be simplified to O (nD 

2 
m 

) . This also ex-

ibits that DCCF does not have a high computational complexity. 

.4. Implementation details 

To set up our experiment, we first pre-train a stacked auto- 

ncoder network with d-50 0-50 0-10 0 0- d ′ -10 0 0-50 0-50 0- d net-

ork structure, where d ′ indicates the size of embedded layer, 

nd the pre-training epochs are fixed as 100. After that, we use 

he pre-trained weights to initialize our model and start training. 

he learning rate ρ is set to 0.001, the parameter λ in contractive 

earning is set to 10 −7 , the parameter γ in focal loss is fixed as 2,

nd the training epochs are set to 200. 

Note that the target distribution T only needs to be updated 

fter every O epochs to prevent unstable training. And we define a 

hreshold δ to represent the variety in the label allocation among 

wo consecutive target distribution updates, the training will stop 

hen δ ≤ 0 . 1% . 

. Experiments analysis 

In this section, we describe the information of the databases 

sed in experiments, the parameter settings and the evaluation 

etrics at first. Then comprehensive experiments are performed to 

valuate the effectiveness of our method. 

.1. Data sets 

1. MNIST . MNIST is a handwritten digital image data set with 10 

classes from (0–9), 1 which consists of 60,0 0 0 samples for train- 

ing and 10,0 0 0 samples for testing. Each image is reshaped as 

a 784-dimensional vector. 

2. Fashion-MNIST . Fashion-MNIST database consists of 70,0 0 0 

gray-scale images, which contains 10 categories in total (such 

as Coat, Sneaker, Trouser, etc.). 2 The division of training set and 

test set in Fashion-MNIST is consistent with MNIST, and each 

sample is represented by a 784-dimensional feature vector. 

3. USPS . USPS data set contains a total of 9298 pieces of hand- 

written digital images in 10 different categories from 0 to 9, 3 

of which the training set contains 7291 images, and the rest 

are used as test set. The resolution of each sample is 16 × 16. 

4. STL-10 . STL-10 data set is an real-world image data set that 

contains 10 different classes (such as car, dog, bird, airplane, 

etc.). 4 There are 1300 images in each category in this data set, 

and the size of each image is 96 × 96 × 3. 

5. CIFAR-10 . CIFAR-10 data set contains 60,0 0 0 color image sam- 

ples from the real world (such as bird, horse, ship, etc.), of 

which 50,0 0 0 samples are used for training and the remaining 

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://cs.stanford.edu/~acoates/stl10/
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Table 1 

A brief description of the data sets used in our experiments. 

ID data set # instances # classes # original size 

1 MNIST 70,000 10 28 × 28 

2 Fashion-MNIST 70,000 10 28 × 28 

3 USPS 9298 10 16 × 16 

4 STL-10 13,000 10 96 × 96 × 3 

5 CIFAR-10 60,000 10 32 × 32 × 3 

6 CIFAR-100 60,000 100 32 × 32 × 3 

7 Reuters-10K 10,000 4 2000 

Fig. 4. Sample images of each image data set used in experiment. Note that for 

each data set we randomly selected 10 sample, and from the top row to the bottom 

row are: (a) MNIST, (b) Fashion-MNIST, (c) USPS, (d) STL-10, (e) CIFAR-10, (f) CIFAR- 

100. 
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10,0 0 0 samples for testing. 5 Each image in this data set is with

the size of 32 × 32 × 3. 

6. CIFAR-100 . The size and the number of samples in CIFAR-100 

data set is similar to CIFAR-10 database. It consists of 100 dif- 

ferent categories in total and each category has 500 training 

samples and 100 test samples. Beside, these 100 categories are 

divided into 20 super categories. Each image has a “fine” label 

(the category it belongs to) and a “coarse” label (the super cat- 

egory it belongs to). 

7. Reuters-10K . Reuters is a text database that contains 804,414 

English news stories for text categorization. 6 Reuters-10K as a 

subset of it, consists of 10,0 0 0 English text documents in 4 root 

categories (government/social, economics, corporate/industrial, 

and markets). Each document in this database is denoted as a 

TF-IDF vector, which contains 20 0 0 most frequent words. 

Table 1 shows the description of several attributes of each data 

et. Furthermore, we also provide brief visualization by randomly 

electing 10 samples for each image data set, as shown in Fig. 4 . 

.2. Experimental settings 

To assess the effectiveness of our method, comparative ex- 

eriment is carried out. Specifically, we compare the proposed 

CCF method with several clustering algorithms. These algorithms 

ould be partitioned into three categories, the classical cluster- 

ng algorithm k -means, the two-stage clustering methods by ap- 

lying feature learning, including locality preserving nonnegative 

atrix factorization (NMF-LP) [29] , auto-encoder (AE) [30] , label 

onsistent auto-encoder (LCAE) [31] , stacked what-where auto- 

ncoders (SWWAE) [32] , and the jointly optimized deep cluster- 

ng methods including deep embedded clustering (DEC) [11] , im- 

roved deep embedded clustering (IDEC) [12] , variational deep 

mbedding (VaDE) [33] , joint unsupervised learning (JULE) [34] , 
5 http://www.cs.toronto.edu/ ∼kriz/cifar.html 
6 http://www.research.att.com/ ∼lewis/reuters21578.html 

c

r  

t

6 
emi-supervised deep embedded clustering (SDEC) [35] , the HOE 

odel of deep clustering with sample-assignment invariance prior 

DCSAIP) [36] , ClusterGAN [37] , k -autoencoder deep clustering 

 k -DAE) [38] , VaGAN-GMM [39] , invariant information clustering 

IIC) [40] , and Gaussian attention clustering (GATCluster) [41] . 

In particular, k -means is used as the baseline in our experi- 

ents. For AE, LCAE, DEC and IDEC, we run the publicly released 

odes and report their clustering performance, and for other com- 

arative methods we report their performance directly from the 

elated papers. Note that for the three RGB data sets: STL-10, CI- 

AR10 and CIFAR100, we use a 50-layer deep residual network for 

re-processing before training, and obtain the extracted features 

ith a size of 2048 dimensions in the average pooling layer. Re- 

arding the training of each data set, the learning rate ρ is fixed 

s 0.001, the dimension of the hidden layer is set to the number 

f classes k of the data set. The number of training epochs is set 

o 200 for each comparative method, and the network structure of 

EC and IDEC are set to d-50 0-50 0-2,0 0 0- k -2,0 0 0-50 0-50 0- d ac-

ording to the original papers, where d is the dimension of original 

ata. All other parameters follow the default settings. 

.3. Evaluation metrics 

In this section, two typical clustering evaluation metrics are se- 

ected to assess the quality of each comparative algorithm, includ- 

ng clustering accuracy and normalized mutual information. 

The clustering accuracy (ACC) is used to compare the predicted 

abels with the true labels to measure the clustering performance. 

ssume p and y denote the predicted labels and the true labels 

espectively, ACC can be formalized as follows: 

CC = 

∑ n 
i =1 δ(y i , map( p i )) 

n 

, (19) 

here n indicates the number of samples, and map(·) represents a 

ne-to-one mapping that covers every possible mapping between 

he predicted labels produced through clustering and the true la- 

els. Besides, δ(x, y ) = 1 only when x = y . 

The normalized mutual information (NMI) is based on the mu- 

ual information (MI). Assume A and B as two discrete random 

ariables, MI can be formalized as: 

I(A, B ) = H(A ) + H(B ) − H(A, B ) , (20) 

here H(A ) and H(B ) indicate the information entropy of the cor- 

esponding variables, and H(A, B ) represents the joint information 

ntropy of two variables. Further, NMI can be formalized as fol- 

ows: 

M I(A, B ) = 

M I(A, B ) 

(H(A ) + H(B )) / 2 

, (21) 

here NMI is normalized by MI, and its value range is [0,1]. The 

igher value of NMI denotes the closer relationship between A and 

 , as well as the better clustering performance. 

.4. Experimental results 

In this section, we carry out comprehensive experiments to 

emonstrate the effectiveness of the proposed DCCF method, in- 

luding the comparison with several popular clustering approaches 

nd the feasibility analysis of large-scale clustering. 

.4.1. Comparison with several clustering approaches 

The proposed DCCF method is compared with several popular 

lustering approaches on six publicly available data sets, and the 

esults are presented in Tables 2 and 3 , from which we can draw

he following conclusions. 

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.research.att.com/~lewis/reuters21578.html
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Table 2 

Clustering accuracy of different clustering approaches on each tested data set. The results marked 

in bold represents the best clustering performance. Note that “–” indicates that the source code 

and score of these approaches were not available in the corresponding database. 

Method/Data set MNIST Fashion-MNIST USPS STL-10 CIFAR-10 Reuters-10K 

k -means 57.62 56.34 67.84 28.35 22.19 57.88 

NMF-LP 47.10 43.40 65.20 – 17.97 66.48 

AE 78.53 56.72 68.03 34.83 21.63 59.76 

LCAE 58.57 56.31 70.57 30.02 24.02 61.78 

SWWAE 82.51 – – 27.04 28.40 72.84 

DEC 84.46 58.69 76.56 36.12 22.37 61.85 

IDEC 84.92 59.23 77.14 37.80 23.49 68.43 

VaDE 94.50 55.20 56.60 – 15.60 72.30 

JULE 96.40 56.30 95.00 27.69 27.15 62.64 

SDEC 86.11 – 76.39 38.86 27.26 69.37 

DCSAIP 87.16 – – – 22.06 69.81 

ClusterGAN 95.00 63.00 70.00 – 28.12 79.46 

k -DAE 87.82 59.34 76.89 33.56 23.31 71.19 

VaGAN-GMM 95.48 63.84 – – 28.79 80.12 

DCCF 97.41 62.12 85.53 72.78 45.81 83.36 

Table 3 

Normalized mutual information of different clustering approaches on each tested data set. The 

results marked in bold represents the best clustering performance. Note that “–” indicates that 

the source code and score of these approaches were not available in the corresponding database. 

Method/Data set MNIST Fashion-MNIST USPS STL-10 CIFAR-10 Reuters-10K 

k -means 55.43 52.57 60.39 23.48 8.24 29.59 

NMF-LP 45.20 42.50 69.30 – 5.10 34.40 

AE 74.90 55.35 62.26 30.08 6.71 32.36 

LCAE 48.46 55.10 61.70 27.31 8.80 32.92 

SWWAE 73.60 – – 19.62 23.30 38.05 

DEC 80.91 59.09 78.37 31.82 9.62 31.46 

IDEC 82.37 60.42 79.15 32.46 10.38 35.15 

VaDE 87.60 57.30 51.20 – 3.60 41.60 

JULE 91.30 60.80 91.30 18.15 19.23 40.54 

SDEC 82.89 – 77.68 32.84 17.20 47.62 

DCSAIP 75.50 – – – 7.02 34.33 

ClusterGAN 89.00 64.00 67.90 – 15.60 55.30 

k -DAE 85.71 64.17 79.76 24.55 11.79 44.77 

VaGAN-GMM 91.70 63.30 – – 15.80 53.60 

DCCF 93.32 64.58 82.51 66.84 36.19 55.52 
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First, it is obvious that an appropriate representation learning 

ethod is beneficial to clustering tasks. We can see from these ta- 

les that the performance of two-stage clustering and deep cluster- 

ng methods exceed classical k -means method with a large margin, 

hich indicates the power of representation learning. At the same 

ime, deep clustering methods outperform the two-stage cluster- 

ng methods in most case, because the joint optimization in deep 

lustering forces the network to learn a cluster-oriented represen- 

ation. 

Second, the proposed DCCF method outperforms other compar- 

tive approaches on handwritten digital image data sets. Especially 

n the MNIST database, the DCCF method obtains the state-of-the- 

rt performance, its 97.41% clustering accuracy exceeds the sec- 

nd best method JULE by 1.01%, and is 39.79% higher than the 

 -means. Meanwhile, we can notice that the clustering methods 

ased on the generative model also show their advantages when 

andling digital image databases. For example, VaDE, ClusterGAN, 

nd VaGAN-GMM obtain encouraging clustering performance on 

NIST, and VaGAN-GMM and ClusterGAN obtain the best two re- 

ults in terms of ACC on the Fashion-MNIST data set. Nevertheless, 

t is noteworthy that in comparison with them, DCCF still obtains 

ompetitive performance, as it achieves the best results in terms of 

MI on the Fashion-MNIST database, and is also the runner-up on 

he USPS database. 
1

7 
Third, DCCF also exhibits its effectiveness on the real-world 

ata sets such as STL-10 and CIFAR-10. For example, the perfor- 

ance gap between DCCF and the second best method SDEC on 

he STL-10 database is 33.92% and 34% regarding the ACC and NMI 

etrics. In addition to image data sets, our method also shows the 

dvantages and potential in processing text data. For instance, on 

he classic text data set Reuters-10K, the ACC and NMI of DCCF 

re 83.36% and 55.52%, which outperforms the other comparative 

ethods with a large margin. On the whole, the effectiveness of 

he proposed DCCF method is demonstrated through comprehen- 

ive experiments. By comparing with other clustering methods that 

pply different feature learning methods, we demonstrate the ef- 

ciency of utilizing contractive representation learning to extract 

eatures. The comparison between the proposed DCCF method and 

ther deep clustering methods also proves that the introduced fo- 

al loss in the clustering layer can improve the label assignment 

echanism. 

.4.2. Feasibility of large-scale clustering 

The potential of clustering on the large-scale data sets is also a 

easure for judging the quality of a clustering algorithm. In order 

o demonstrate the feasibility of our method on large-scale data 

et, we introduce the CIFAR-100 data set in our experiment. CIFAR- 

00 database is a popular large-scale data set, which consists of 
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Table 4 

Clustering performance of the CIFAR-100 data set. Note that the baseline indicates the performance 

of k -means. 

Method Baseline AE SWWAE JULE DEC IIC GATCluster DCCF 

ACC 13.15 16.45 14.72 13.67 18.81 25.70 28.10 28.73 

NMI 8.47 10.04 10.34 10.26 13.79 22.50 21.50 27.62 

Fig. 5. The histogram for intuitive comparison of the clustering performance of dif- 

ferent methods on the CIFAR-100 data set. 
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0,0 0 0 samples from 100 different classes. In Table 4 and Fig. 5 ,

e show the comparison of clustering performance between DCCF 

nd the other seven clustering methods, and the detail of data pro- 

essing refers to Section 4.2 . 

Through the comparison, it can be noticed intuitively that deep 

lustering promotes clustering on large-scale data set. For exam- 

le, DEC obtain 18.81% on ACC metric, which is 5.66% higher than 

 -means. Furthermore, our proposed DCCF method also obtain en- 

ouraging clustering performance on large-scale data set. The ACC 
ig. 6. The t-SNE visualization of the learned representation on MNIST data set. Note th

earned representation in the hidden layer. 

8 
nd NMI of DCCF are 9.92% and 13.83% higher than DEC, respec- 

ively. Additionally, DCCF also achieves competitive clustering per- 

ormance compared to the state-of-the-art approaches such as IIC 

nd GATCluster. Specifically, the gaps between DCCF and them in 

erms of ACC are 3.03% and 0.63%, while the gaps with regard to 

MI are 5.12% and 6.12%. This fully indicates the potential and fea- 

ibility of the proposed method in large-scale clustering. 

.5. Experimental visualization 

In order to show the feature learning process and clustering 

erformance in an intuitive way, we conduct a experimental vi- 

ualization on MNIST data set. Specifically, we randomly select 

0,0 0 0 samples from the learned representation in the hidden 

ayer and apply t-SNE method to further reduce the representation 

nto 2-dimensional features. Then we provide a 2D visualization 

rom different epochs { 0 , 5 , 10 , 25 , 50 , 100 } in Fig. 6 . 

From this figure we can observe that most samples are mixed 

ogether and are not clearly distinguished in the epoch 0. How- 

ver, as the algorithm iterates, the samples are gradually divided. 

e can also find that in the epoch { 5 , 10 , 25 , 50 , 100 } , the distance

etween the same classes is constantly shrinking, and the distance 

etween different classes is constantly increasing, which indicates 

he better clustering performance. Especially in the epoch 100, the 

amples can be clearly distinguished, and there are almost no dis- 

rete points, which also prove the utility of the contractive feature 

earning and the applied focal loss in the clustering layer. 
at the visualization is generated by randomly selecting 10,0 0 0 samples from the 
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Table 5 

Clustering performance of DCCF and three degradation models. The best performance is marked in 

bold . 

Contractive penalty term Focal loss MNIST USPS Reuters-10K 

ACC NMI ACC NMI ACC NMI 

× × 84.79 82.30 77.16 79.29 68.65 35.24 

� × 94.30 88.65 77.33 79.67 77.34 47.93 

× � 91.59 87.82 80.44 80.75 78.64 50.19 

� � 97.41 93.32 85.53 82.51 83.36 55.52 

Fig. 7. The influence of different values of parameter β to the clustering performance. Note that we report both ACC and NMI at the same time, and the value range of β is 

{ 0 . 0 01 , 0 . 0 05 , . . . , 0 . 5 , 1 } . 

4

p

a

R

f

t

t

w

o

M

c

t

a

c

s

t

d

l

o

c

i

c

r

a

4

r

e

4

t

i

o

t  

a

t

o

F

t

t

t

m

r

t

v

s

.6. Ablation study 

To validate the effectiveness of the introduced contractive 

enalty term and focal loss in our method, we further conduct 

n ablation study on three databases, including MNIST, USPS and 

euters-10K. Specifically, we construct three degradation models 

or DCCF by imposing only one particular loss term, i.e., contrac- 

ive penalty term and focal loss, as well as by not imposing ei- 

her of them. The experimental results are shown in Table 5 , from 

hich the following observations can be drawn. 

First, we can see that adding either contractive penalty term 

r focal loss is beneficial for the clustering tasks, especially on the 

NIST and Reuters-10K databases, where significant improvements 

an be seen. It seems that the benefit brought by adding the con- 

ractive penalty term is relatively modest on the USPS database, 

lthough there is still a small improvement. Second, applying fo- 

al loss on the USPS and Reuters-10K databases leads to more 

ignificant improvements in clustering than applying the contrac- 

ive penalty term, while the opposite is observed on the MNIST 

atabase. This demonstrates the respective advantages of the two 

oss terms when dealing with different clustering tasks. Third, it is 

bvious to see that the simultaneous adoption of two loss terms 

an yield further improvements in clustering performance, which 

ndicates that they are mutually reinforcing. In other words, the 

ontractive penalty term enables the algorithm to learn a more 

epresentative features, while the focal loss further improves the 

ssignment of clusters. 
c

9 
.7. Parameter sensitivity 

In this section, the sensitivity analysis experiment on two pa- 

ameters in the DCCF method is carried out, including the param- 

ter β in the loss function and the cluster numbers K. 

.7.1. Influence of the contribution of clustering layer loss 

As mentioned in Section 3.3 , the parameter β controls the con- 

ribution of the loss of clustering layer to the total loss. Therefore, 

t is necessary to evaluate the influence of the different values of β
n the clustering performance of our method. Specifically, we set 

he variation range of the parameter β in { 0 . 0 01 , 0 . 0 05 , . . . , 0 . 5 , 1 } ,
nd display the clustering results under each value of β in Fig. 7 . 

It can be clearly seen from the figure that in most data sets, 

he performance of DCCF conducted with small value of β is obvi- 

usly lower than that of DCCF performed with higher value of β . 

or instance, in the MNIST data set, when β is 0.1, the ACC is more 

han 20% higher than when β is 0.001, which demonstrates that 

he clustering module in our method can effectively promote clus- 

ering tasks. In addition, the bigger value of β does not necessarily 

ean that it is better. In our practical analysis, the best clustering 

esults in the most data sets are obtained when β is 0.1. Although 

he clustering performance will fluctuate due to the changes in the 

alue of β , the algorithm maintains relative stability for large and 

mall values. It also suggests that a proper value of β can signifi- 

antly help clustering. 
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Fig. 8. The influence of different values of cluster numbers K to the clustering performance. Note that the value range of K on Reuters-10K is { 2 , 3 , . . . , 7 , 8 } due to its true 

number of categories, and for the other data sets is { 7 , 8 , . . . , 12 , 13 } . 
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Fig. 9. The convergence curve of the DCCF method in the MNIST data set. Note that 

the x -axis represents the training epoch which is fixed at 200, and the y -axis from 

left to right denotes total loss, ACC, and NMI, respectively. 
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.7.2. Influence of different cluster numbers 

In the real world, it is hard to gain the actual number of clus- 

ers. To this end, we conduct experiment to evaluate the influence 

f different cluster numbers K to the clustering performance of 

CCF. To be specific, we set the variation range of the cluster num- 

ers K to { 7 , 8 , . . . , 12 , 13 } for the data sets other than Reuters-10K.

ince the true number of categories of Reuters-10K is 4, we set K

o { 2 , 3 , . . . , 7 , 8 } . 
As shown in Fig. 8 , both ACC and NMI are reported for each

ata sets. We can observe that when the number of clusters K is 

ifferent from the real cluster numbers, the clustering performance 

s affected to a certain extent. Among them, the overestimation of 

luster numbers will not seriously hurt the clustering performance, 

hile the underestimation will have a relatively greater impact on 

t. But the algorithm also shows great stability under different val- 

es of K. For instance, on the CIFAR-10 data set, as the value of K

hanges, the fluctuation of ACC and NMI are within 6% and 2%. In 

ddition, based on empirical analysis, we find that compared with 

CC, the fluctuation of NMI is relatively insignificant, which may 

e due to the fact that ACC is more sensitive to cluster numbers K.

.8. Convergence analysis 

In this section, we conduct a convergence analysis for the pro- 

osed DCCF method. Specifically, we experiment with the MNIST 

atabase, set the training epoch to 200, and then report the to- 

al loss, ACC and NMI. The convergence curve of the DCCF method 

s illustrated in Fig. 9 . Note that the x -axis represents the training

poch and the y -axis from left to right denotes total loss, ACC, and

MI, respectively. 

In terms of convergence speed, our method has great advan- 

ages. As can be seen from Fig. 9 , the algorithm basically reaches 

onvergence after 50 training epochs, which shows the capabil- 

ty of our method to reach convergence quickly. On the other 

and, our algorithm has also been proved to have high stability. As 

hown in Fig. 9 , the scores of ACC and NMI in DCCF method fluc-

uate within 1% after 50 training epochs, which fully proves the 

obustness of our method. 
10 
. Conclusion and further discussion 

In this paper, the framework of deep clustering with contrac- 

ive representation learning and focal loss (DCCF) was proposed to 

olve the existing shortcomings of deep clustering. The proposed 

ethod forced a penalty term of the Jacobian matrix in feature 

earning to learn the more effective features, and introduced the 

ocal loss to improve the label assignment mechanism in cluster- 

ng layer. To tackle the challenge that the employment of focal 

oss requires real labels, we took advantage of the self-training in 

eep clustering, and designed a mechanism to apply focal loss in 

n unsupervised manner. To our best knowledge, this is the first 

ork to introduce the focal loss into unsupervised clustering tasks. 

oreover, we compared with several clustering methods on seven 

ublicly available data sets, and the comprehensive experiments 

emonstrated the effectiveness of our method in several clustering 

asks. Nevertheless, there are still some issues worth considering 

hat may be beneficial to clustering, such as the potential shown 

y semi-supervised learning in clustering tasks, which may further 
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mprove the label assignment mechanism of this paper. Therefore, 

n future work, we will focus on exploring the improvement of 

eep clustering framework more deeply through applying the idea 

f semi-supervised learning to our work. 
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