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Abstract
In this work, we study the problem of partitioning a set of graphs into different groups such that the graphs in the same

group are similar while the graphs in different groups are dissimilar. This problem was rarely studied previously, although

there has been a lot of work on node clustering and graph classification. The problem is challenging because it is difficult to

measure the similarity or distance between graphs. One feasible approach is using graph kernels to compute a similarity

matrix for the graphs and then performing spectral clustering, but the effectiveness of existing graph kernels in measuring

the similarity between graphs is very limited. To solve the problem, we propose a novel method called Deep Graph-Level

Clustering (DGLC). DGLC utilizes a graph isomorphism network to learn graph-level representations by maximizing the

mutual information between the representations of entire graphs and sub-structures, under the regularization of a clustering

module that ensures discriminative representations via pseudo-labels. DGLC achieves graph-level representation learning

and graph-level clustering in an end-to-end manner. The experimental results on six benchmark datasets of graphs show

that our DGLC has state-of-the-art performance in comparison to many baselines.

Keywords Graph neural network � Graph-level clustering � Graph kernel

1 Introduction

Graph-structured data widely exist in real-world scenarios,

such as social networks [1] and molecular analysis [2].

Compared to other data formats, graph data explicitly

contain connections between data through the attributes of

nodes and edges, which can provide rich structural

information for many applications. In recent years,

machine learning on graph-structured data has gained more

and more attention. Many supervised and unsupervised

learning methods have been proposed for graph-structured

data in various applications [3–6]. The machine learning

problems of graph-structured data can be organized into

two categories: node-level learning and graph-level learn-

ing. In node-level learning, the samples are the nodes in a

single graph. Node-level learning mainly includes node

classification [7–10] and node clustering [11–17]. Classical

node classification methods are often based on graph

embedding [18–20] and graph regularization [21, 22],

while recent advances are based on graph neural networks

(GNNs) [23–25]. Owing to the success of GNNs in node

classification, a few researchers have proposed GNN-based

methods for node clustering [26–29].

Different from node-level learning, in graph-level

learning, the samples are a set of graphs that can be

organized into different groups. Classical methods for

graph-level classification are often based on graph kernels

[30, 31] while recent advances are based on GNNs [32–35].

Researchers generally utilize various types of GNN, e.g.,
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graph convolutional network (GCN) [23] and graph iso-

morphism network (GIN) [24] to learn graph-level repre-

sentations by aggregating inherent node information and

structural neighbor information in graphs; then, they train a

classifier based on the learned graph-level representations

[36–39]. Nevertheless, collecting large amounts of labels

for graph-level classification is costly in real problems, and

the clustering on graph-level data is much more difficult

than that on nodes and still remains an open issue. It

thereby shows the importance of exploring graph-level

clustering, namely partitioning a set of graphs into different

groups such that the graphs in the same group are similar

while the graphs in different groups are dissimilar.

Previous research on graph-level clustering is very

limited. The major reason is that it is difficult to represent

graphs as feature vectors or quantify the similarity between

graphs in an unsupervised manner [40]. An intuitive

approach to graph-level clustering is to perform spectral

clustering [41–44] over the similarity matrix that is pro-

duced by graph kernels [45–47] based on subgraph, ran-

dom walk, etc. Although there have been a few graph

kernels such as random walk kernel [48] and Weisfeiler-

Lehman kernel [49], most of them rely on manual designs

that may not provide desirable generalization capability for

various types of graphs and produce satisfactory similarity

matrices for spectral clustering, which will be demon-

strated in Sect. 4.3.

Another solution comes with the encouraging develop-

ment of GNNs. Some latest works such as GCN [5, 23] and

GIN [24] have been proven to be effective in learning

node/graph-level representations for various downstream

tasks, e.g., node clustering [27, 50, 51] and graph classi-

fication [37, 52, 53] thanks to the powerful generalization

and representation learning capability of deep neural net-

works. Therefore, it may be possible to achieve graph-level

clustering by performing classical clustering algorithms

such as k-means [54] and spectral clustering over the

graph-level representations produced by various unsuper-

vised graph representation learning methods [37, 55, 56].

Although the aforementioned GNN-based unsupervised

graph-level representation learning methods have shown

promising performance in terms of some downstream tasks

such as node clustering and graph classification, they do

not guarantee to generate effective features for the clus-

tering tasks on entire graphs. In contrast, graph-level

clustering may benefit from an end-to-end framework that

can learn clustering-oriented features in graph-level rep-

resentation learning. We summarize our motivation here:

(1) Graph-level clustering is an important problem but it is

rarely studied, though there have been a lot of works on

graph-level classification and node-level clustering. (2) The

performance of graph kernels followed by spectral clus-

tering and two-stage methods (deep graph-level feature

learning followed by k-means or spectral clustering) have

not been well explored. (3) An end-to-end deep learning-

based graph-level clustering method is expected to out-

perform graph kernels and the two-stage methods because

the feature learning is clustering-oriented. Therefore, we

propose a novel graph clustering method called deep

graph-level clustering (DGLC) in this paper. The proposed

method is a fully unsupervised framework and yields

clustering-oriented graph-level representations via jointly

optimizing two objectives: representation learning and

clustering. The main contributions of this paper are sum-

marized as follows:

• We investigate the effectiveness of various graph

kernels as well as unsupervised graph representation

learning methods in the problem of graph-level

clustering.

• We propose an end-to-end graph-level clustering

method. In the method, the clustering objective can

guide the representation learning for entire graphs,

which is demonstrated to be much more effective than

those two-stage models in this paper.

• We conduct extensive comparative experiments of

graph-level clustering on six benchmark datasets. Our

method is compared with five graph kernel methods and

four cutting-edge GNN representation learning meth-

ods, under the evaluation of three quantitative metrics

and one qualitative (visualization) metric. Our method

has state-of-the-art performance.

2 Preliminaries

The notations used in this paper are shown in Table 1. In

the next two subsections, we briefly introduce graph ker-

nels and GNN-based graph-level representation learning

methods. We will also illustrate how to apply them to

graph-level clustering.

2.1 Graph kernels

Graph kernels are typically used in both supervised and

unsupervised learning that exploit graph topology. They

aim to learn graph representation implicitly with prede-

termined graph sub-structures. For a graph G, after its sub-

graphs Gif g are defined, the kernel is calculated according

to the occurrences of the sub-graphs of Gif g. Namely,

KgðGm;GnÞ :¼ F>
Gm
FGn

, where FGi
denotes frequency. In

recent years, much effort has been devoted to the identi-

fication of desirable sub-graphs ranging from Graphlet

kernel [57], Random walk kernel [30], Shortest-path kernel

[58] to Subgraph matching kernel [59], Pyramid match
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kernel [60], etc. For example, one of the most popular

kernels is the Weisfeiler-Lehman kernel [49]. It belongs to

the subtree kernel family and could scale up to large and

labeled graphs. Weisfeiler-Lehman kernel is built upon

other base kernels through Weisfeiler-Lehman test of iso-

morphism on graphs. The essential idea of the Weisfeiler-

Lehman kernel is to relabel the graph with not only the

original label of each vertex, but also the sorted set of

labels of its neighbors (subtree structure). With a runtime

scaling only linearly in the number of edges of the graphs,

the Weisfeiler-Lehman kernel is widely applied in com-

putational biology and social network analysis. However,

the Weisfeiler-Lehman kernel’s hashing step is somewhat

ad-hoc, with performance varying from data to data [45].

Another state-of-the-art algorithm is the shortest-path ker-

nel [58], which is based on paths instead of conventional

walks and cycles. By transforming the original graph into

shortest-paths graph ~Gv;u;e ¼ fthe number of occurrences

of vertex v and u connected by shortest-path eg, it avoids
the high computational complexity of graph kernels based

on walks, subtrees, and cycles. In this paper, several graph

kernels are selected as comparative models to test their

efficiency in clustering. More specifically, we perform

spectral clustering with the similarity matrices computed

by graph kernels. One limitation is that existing graph

kernels are not effective enough to quantify the similarity

between graphs. In addition, most of them cannot take

advantage of the node’s features and labels of graphs. The

related results and time complexity comparison can be

found in Tables 3, 4 and 5 and Sect. 4.6.

2.2 Unsupervised graph-level representation
learning

In recent years, GNN related models [32, 34, 61] have

shown state-of-the-art performance in many graph data-

related tasks such as nodes classification [23, 62] and graph

classification [24, 36, 37, 63]. A number of graph

representation learning methods have been proposed to

handle the graph/node classification and node clustering

tasks. For example, [55] proposed to learn low-dimensional

mapping for nodes that maximally preserves the neigh-

borhood information of nodes. [64] proposed to learn node

representations for node classification via maximizing the

mutual information between the patch representations and

summarized graph representations. Similarly, [37] utilized

the mutual information maximization strategy and GIN

[24] to learn graph representations for graph-level classi-

fications. [65, 66] took inspiration from the self-supervised

learning to augment the graph data to construct positive/

negative pairs, thereby learning effective graph represen-

tations with contrastive learning strategy [67].

It should be pointed out that existing graph representa-

tion learning methods rarely investigate the graph-level

clustering task, as it is far more difficult than graph clas-

sification or node clustering. An intuitive strategy is to

perform k-means [54] or spectral clustering [41] on the

learned graph-level representations given by those meth-

ods. Nevertheless, the clustering performance is not

desirable as can be observed in Sect. 4.4, because the

representations learned by those methods are not guaran-

teed to be suitable or effective for graph-level clustering.

Therefore, we present our DGLC method to investigate the

way to learn clustering-oriented graph-level representa-

tions, of which the learning is guided by an explicit clus-

tering objective.

3 Methodology

3.1 Problem formulation

Given a set of n graphs, i.e., G :¼ fG1;G2; . . .;Gng, where
the i-th graph Gi ¼ ðVi;EiÞ has node features Xi ¼
fxðiÞv gv2Vi

and X :¼ fX1;X2; . . .;Xng. The graph-level

Table 1 Notations for the main variables and parameters in this paper

G Graph set �G Graph set in a minibatch

G A single graph V Node set

E Edge set X Node features set

N ðvÞ Neighborhood set of node v K Number of GNN hidden layers

hkv Learned feature for node v in k-th GNN layer akv Aggregated feature for node v in k-th GNN layer

H/ðGÞ Graph-level representation I/;w Mutual information estimator

fh Cluster projector Z/;hðGÞ Cluster embedding

c Number of clusters / Parameters of GNN

w Parameters of mutual information estimator h Parameter of clustering network
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clustering aims to partition the set G into a few non-over-

lapped groups, i.e., G ¼ Gð1Þ [ Gð2Þ [ � � �GðcÞ and GðiÞ \
GðjÞ ¼ ; for any i 6¼ j, such that the graphs in the same

group are similar while the graphs in different groups are

dissimilar, without using any label information.

Since the original graph data may not have graph-level

feature vectors or they often contain redundant and dis-

tracting information, a more effective way is to perform

clustering in a latent space given by some representation

learning methods. Nevertheless, the two-step models dis-

cussed in Sect. 2.2, i.e., those based on graph kernels and

graph-level representation learning, cannot guarantee to

learn clustering-oriented graph representations because

they are not optimized specifically for graph-level clus-

tering tasks. Therefore, we propose to learn latent repre-

sentations and conduct clustering simultaneously, where

representation learning and clustering facilitate each other.

We formalize the objective function for graph-level clus-

tering as follows:

Lð/; hÞ :¼ Lrðg/ðX ;GÞ;X ;GÞ þ Lcjhðg/ðX ;GÞÞ: ð1Þ

In (1), Lr denotes the representation learning objective that

aims to map the input data X ;G into a latent space via a

deep graph neural network with parameters /. Lcjh denotes
the clustering objective on the representations g/ðX ;GÞ
and is associated with a deep neural network with param-

eters h that may also contain the cluster centers or

assignments. Note that there could be a trade-off parameter

between Lr and Lcjh, but we just ignore it for convenience.

We see that the objective Lð/; hÞ does not only learn

cluster-oriented representations, but also directly produces

clustering results. So there is no need to perform k-means

or spectral clustering after the pure representation learning

like the two-step models.

3.2 Graph-level representation learning module

To learn effective representations of the graphs, we take

advantage of GNN [23, 24, 32]. GNN leverages node

information and structural information to learn represen-

tations for nodes or graphs. GNN aggregates the neigh-

boring information of each node to itself iteratively; thus,

the learned features could capture both the inherent node

information and its neighbors’ information. Specifically,

the learned feature hv for node v in the k-th layer can be

formulated as follows:

hðkÞv ¼ COMBINEðkÞ hðk�1Þ
v ; aðkÞv

� �

¼ COMBINEðkÞ hðk�1Þ
v ;AGGREGATEðkÞðfhðk�1Þ

u : u 2 N ðvÞgÞ
� �

;

ð2Þ

where

AGGREGATEðkÞðfhðk�1Þ
u : u 2 N ðvÞgÞ ¼

P
u2N ðvÞ h

ðk�1Þ
u

denotes the aggregated operation of neighbor features of

node v, and N ðvÞ is the neighborhood set of node v. Thus,

a
ðkÞ
v denotes the aggregated neighbor features in the k-th

layer. COMBINEðkÞ hðk�1Þ
v ; a

ðkÞ
v

� �
¼ rðWðkÞ � ðhðk�1Þ

v þ

a
ðkÞ
v Þ þ bðkÞÞ the denotes combine operation to obtain the

updated feature of node v in the k-th layer, where rð�Þ,
WðkÞ, and bðkÞ indicate the activation function (e.g., ReLU),

weight matrix, and bias in the k-th layer. Particularly, the

initial representation hð0Þv is set as the node features of v,

i.e., xv. It is worth noting that more global information

could be obtained as the layer deepens, while some more

generalized information would be possessed in the earlier

layers [24]. Therefore, considering the information from

various depths of the network would help us get more

powerful representations for graph-level clustering tasks.

Following the idea, we concatenate the representation

learned at each layer as:

hi/ ¼ CONCAT fhðkÞi gKk¼1Þ
� �

; ð3Þ

where hi/ is concatenated representation for node i, and h
ðkÞ
i

is the representation learned in k-th layer. After that, we

can utilize a READOUT function to obtain the graph-level

representation, i.e.,

H/ðGjÞ ¼ READOUTðfhi/g
jGjj
i¼1Þ; ð4Þ

where jGjj denotes the number of nodes in Gj. Therefore,

for the given graph dataset �G :¼ fGj 2 Ggnbj¼1 in a batch,

H/ð �GÞ 2 Rnb�Kdh can be regarded as the learned graph-

level representations, where nb is number of graphs in a

batch, dh is the dimension of each hidden layer of GNN and

K is the number of GNN layers. Note that we use the sum

readout strategy in this work.

As graph-level clustering is an unsupervised learning

task, it is important to learn more representative features in

an unsupervised manner. We follow [37, 68] to achieve this

by maximizing the mutual information between the rep-

resentations of entire graphs and sub-structures, since it has

been demonstrated as a powerful unsupervised graph rep-

resentation learning technique. Specifically, for the given

graph datasets in a batch �G that follows an empirical

probability distribution P on the original data space, the

estimator I/;w of the mutual information (MI) over the

global and local pairs is defined as follows:

/̂; ŵ ¼ argmax
/;w

X
�G�G

1

j �Gj
X
i2 �G

I/;wðhi/ð �GÞ;H/ð �GÞÞ,� Lrj/;w;

ð5Þ
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where j �Gj is the number of nodes in �G, i denotes a single

node in �G, I/;w can be parameterized by a discriminator

network T with parameter w. By using Jensen-Shannon MI

estimator [69], I/;w can be formulated as:

I/;w hi/
�Gð Þ;H/

�Gð Þ
� �

:

¼ EP �spð�T/;w hi/ðsÞ;H/ðsÞÞ
� �h i

� EP� ~P sp T/;wðhi/ðs0Þ;H/ðsÞÞ
� �h i

;

ð6Þ

where P denotes the distribution of graph set �G, s denotes

the input (positive) sample, and s0 denotes the negative

sample from the distribution ~P that is identical to distri-

bution P. Particularly, the combinations of global (graph-

level) and local (node-level) representations in a batch are

used to produce negative samples. spðyÞ ¼ logð1þ eyÞ
indicates the softplus function. Note that we maximize the

MI between graph-level and node-level representations,

which facilitates graph-level representations to contain as

much information as possible that is shared between node-

level representations. It is intuitive that performing k-

means or spectral clustering directly on the graph-level

representations learned seems to be an applicable way, but

it often tends to be a trivial solution because the repre-

sentations learned in this way solely are not guaranteed to

be applicable for the graph-level clustering task that we

focus in this work.

3.3 End-to-end graph-level clustering module

To capture more suitable representations for graph-level

clustering, we attempt to learn cluster-oriented represen-

tations by introducing an explicit clustering objective.

Specifically, we propose a clustering network connected

with graph-level features in the representation learning

network described above. Then, the graph-level features

will be projected to the cluster embedding in the low-di-

mensional latent space, which can be formalized as

follows:

zj ¼ fhðH/ðGjÞÞ; ð7Þ

where zj denotes the learned cluster embedding for graph

Gj, and fh is the MLP-based clustering projector with net-

work parameter h. Let Z/;hð �GÞ 2 Rdz�nb be the cluster

embeddings in a batch, where dz is the dimension of cluster

embedding layer. Subsequently, we take inspiration from

[70, 71] to define the graph-level cluster assignment dis-

tribution Q based on Z/;hð �GÞ as follows:

qjtj/;h ¼
ð1þ kzj � ltk

2Þ�1

Pc
t¼1ð1þ kzj � ltk

2Þ�1
; ð8Þ

where zj is the j-th column of Z/;hð �GÞ, c is the number of

clusters, lt is the t-th cluster center that can be initialized

by k-means, and qjtj/;h is the graph-level cluster assignment

indicating the probability that graph Gj belongs to cluster t.

Next, we can further define an auxiliary refined cluster

assignment distribution P to emphasize those assignments

with high confidence in Q as follows:

pjt ¼
q2jtj/;h=

Pnb
j¼1 qjtj/;hPc

t¼1ðq2jtj/;h=
Pnb

j¼1 qjtj/;hÞ
; ð9Þ

where P encourages a more pronounced gap between

assignments with high and low probability in Q and can be

regarded as pseudo-labels for guiding the optimization of

Q. Therefore, we can define the clustering objective by

minimizing the KL-divergence between P and Q as

follows:

Lcj/;h ¼ KLðPjjQÞ ¼
Xnb
j¼1

Xc
t¼1

pjt log
pjt

qjtj/;h
: ð10Þ

Lcjh aims to force Q to approximate P, i.e., to let P guide

the optimization of Q so that the high confident assignment

can be emphasized, which can also be regarded as a self-

training strategy. By jointly optimizing Eqs. 5 and 10, we

can construct an end-to-end deep graph-level clustering

framework that simultaneously implements graph-level

representation learning and clustering. The overall objec-

tive of DGLC in terms of minibatch optimization is as

follows:

Lbatchð/;w; hÞ ¼ � 1

j �Gj
X
i2 �G

I/;wðhi/ð �GÞ;H/ð �GÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Lrj/;w

þ
Xnb
j¼1

Xc
t¼1

pjt log
pjt

qjtj/;h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Lcj/;h

:

ð11Þ

where j �Gj and nb denote the number of nodes and graphs in

a batch. Besides, hi/ð �GÞ and H/ð �GÞ indicate the learned

node-level and graph-level feature matrices, respectively.

4 Experiments

In this section, we evaluate the proposed method in com-

parison with several state-of-the-art competitors in graph-

level clustering tasks. We first introduce the datasets and

baseline methods used in the experiment and describe the

detailed settings of the network and parameters. Then, we

demonstrate the effectiveness of our method through

comprehensive experimental analysis.
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4.1 Dataset description and baseline methods

4.1.1 Dataset

We use six well-known graph datasets in the experiment,

including MUTAG,1 PTC-MR,2 PTC-MM,3 BZR,4

ENZYMES,5 COX2.6 We provide detailed information of

six graph datasets used in our experiment here:

• MUTAG is a compound dataset that contains 188

compounds, which are grouped into 2 categories based

on their mutagenic effect on a bacterium. Note

molecules possess a natural graph structure, where they

are expressed by an average of 17.93 nodes (for atoms)

and 19.79 edges (for chemical bonds).

• PTC-MR and PTC-MM are the subset of the PTC

dataset, which is a compound dataset that is divided into

2 categories based on the carcinogenicity of rodents.

Note that PTC-MR contains 344 compounds with an

average of 14.29 nodes and 14.69 edges, while PTC-

MM contains 336 compounds with an average of 13.97

nodes and 14.32 edges, respectively.

• BZR is the ligand dataset for benzodiazepine receptors,

which are divided into 2 classes according to the

activity and inactivity of compounds. Note that BZR

contains 405 graphs in total with an average of 35.75

nodes and 38.36 edges per graph.

• ENZYMES contains 600 protein data for 6 classes of

enzymes, with 100 proteins per class. Each protein data

can be represented as a graph with an average of 32.63

nodes and 62.14 edges.

• COX2 consists of 467 inhibitors for cyclooxygenase-2

and are divided into 2 classes based on whether the

compounds are active or inactive. Note that each graph

in this dataset is with an average of 41.22 nodes and

43.45 edges.

We summarize the information of each dataset in Table 2

4.1.2 Baseline methods

We compare the proposed DGLC method with 10 state-of-

the-art graph-level clustering approaches, i.e.:

• Graph kernel: Random walk kernel (RW) [30],

Weisfeiler-Lehman kernel (WL) [49], Optimal assign-

ment-based WL kernel (WL-OA) [72], Shortest-path

kernel (SP) [58], Lovasz-theta kernel (LT) [73], and

Graphlet kernel (GK) [57].

• Unsupervised graph-level representation learning:

including InfoGraph [37], Gromov-Wasserstein factor-

ization (GWF) [74], Graph contrastive learning

(GraphCL) [65], and Joint augmentation optimization

(JOAO) [66].

Note that we evaluate the clustering performance of all

comparative methods via k-means clustering [54] and

spectral clustering [41], more details about the experi-

mental settings refer to Sect. 4.2.

4.1.3 Evaluation metrics

We introduce three clustering metrics used in this paper,

with yj and ŷj denoting the true labels and the predicted

labels for graph Gj respectively.

• Clustering accuracy (ACC): ACC is expressed as the

comparison of the true labels and predicted labels

leveraged on sample size n, which is defined as follows:

ACC ¼
Pn

i¼1 d yj; ŷj
� �

n
; where dðx; yÞ ¼

1 if x ¼ y

0 otherwise

� �

ð12Þ

• Normalized mutual information (NMI): NMI score

scales the mutual information scores by some general-

ized mean of entropy of true label set X and cluster

label set C. It can be formalized as follows:

NMIðX;CÞ ¼ IðX;CÞ
ðHðXÞ þ HðCÞÞ=2 ð13Þ

where IðX;CÞ ¼ HðXÞ þ HðCÞ � HðX;CÞ denotes the
mutual information between X and C, and Hð�Þ is the

information entropy.

• Adjusted rand index (ARI): ARI score is an adjusted

score of Rand index (RI) for chance. RI is also a

similarity measure by considering all pairs of samples

and counting pairs that are assigned in the same or

different clusters in the predicted and true labels. ARI

can be formalized as follows:

ARI ¼ ðRI� Expected RIÞ
ðmaxðRIÞ � Expected RIÞ

P
ij

nij

2

 !
�

P
i

ai

2

 !
P

j

bj

2

 !" #
=

n

2

 !

1
2

P
i

ai

2

 !
þ
P

j

bj

2

 !" #
�

P
i

ai

2

 !
P

j

bj

2

 !" #
=

n

2

 !

ð14Þ

where ai ¼
Pr

j¼1 nij, bi ¼
Ps

i¼1 nij, nij denotes an entry

from the contingency table of cluster i and class j, r and

s are numbers of clusters and classes.

1 https://www.chrsmrrs.com/graphkerneldatasets/MUTAG.zip.
2 https://www.chrsmrrs.com/graphkerneldatasets/PTC-MR.zip.
3 https://www.chrsmrrs.com/graphkerneldatasets/PTC-MM.zip.
4 https://www.chrsmrrs.com/graphkerneldatasets/BZR.zip.
5 http://www.chrsmrrs.com/graphkerneldatasets/ENZYMES.zip.
6 https://www.chrsmrrs.com/graphkerneldatasets/COX2.zip.
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Note that ACC and NMI range from [0, 1], while ARI

ranges from ½�1; 1�. The higher values of ACC, NMI, and

ARI represent better clustering performance.

4.2 Experimental settings

For the graph kernel methods we compared with, they are

all normalized with the base graph kernel to be Vertex

Histogram kernel if needed. We directly perform spectral

clustering [41] on the similarity matrices produced by them

to obtain the clustering results. Note that we also include

the k-means [54] performance of several graph kernels in

Sect. 4.7. While for the unsupervised graph-level repre-

sentation learning methods, e.g., InfoGraph, GraphCL,

JOAO, we perform k-means [54] and spectral clustering on

the learned graph-level representations. Particularly, for

GWF [74] we not only follow the original paper to perform

k-means, but also perform spectral clustering to evaluate its

clustering performance.

To provide a fair comparison in our experiment, we use

exactly the same network architecture as our competitors of

unsupervised graph representation learning [37, 65, 66],

i.e., utilizing the Graph isomorphism network (GIN) [24]

as the backbone GNN. The cluster projector is constructed

with a two-layer MLP-based fully connected network. We

use Adam as the optimizer, the learning rate is chosen from

½10�3; 10�5�, the batch size is set to 128 and the total

running epoch is set to 20. Moreover, there are three

important hyper-parameters in our method, i.e., the layer

numbers of GNN, the hidden dimension dh of each GNN

layer, and the dimension dz of the clustering layer. We

evaluate the influence of different values of them on the

graph-level clustering performance in Sect. 4.5 due to the

limitation of the paper length.

To evaluate the clustering performance, we consider

three popular metrics including clustering accuracy (ACC),

normalized mutual information (NMI), and adjusted rand

index (ARI). We utilize Pytorch Geometric [75] and Gra-

KeL [76] libraries to implement our method and other

baseline methods. Note that we run all experiments 10

times with NVIDIA Tesla A100 GPU and AMD EPYC

7532 CPU, and report their means and standard deviations.

4.3 Experimental results

We compare the proposed DGLC method with 13 baselines

and state-of-the-art methods on the six popular bench-

marks. The experimental results are shown in Tables 3, 4

and 5, from which we have the following observations.

First, graph kernel-based graph-level clustering

approaches are effective on only a few datasets, while

achieving mediocre clustering performances on most

datasets. For example, the RW kernel performs well on

MUTAG and PTC-MR, but mediocre on PTC-MM and

BZR. While the opposite results are observed on the LT

kernel, this is because graph kernels are mainly based on

hand-crafted design and are not suitable for arbitrary

datasets in practice. Second, the unsupervised graph rep-

resentation learning methods show potential in handling

graph-level clustering. For example, JOAO obtains

encouraging performance on MUTAG, BZR, and COX2.

GWF achieves state-of-the-art performance on ENZYMES.

Although such methods achieve promising graph-level

clustering performance in many cases, they still suffer from

the undesirable graph-level representations learned for

clustering, i.e., their representation learning does not

explicitly optimize for the clustering task. Third, the pro-

posed DGLC method outperforms both types of the above

solutions by a large margin in most cases. For example,

DGLC outperforms the runner-up with 5:48% and 13:27%

advantages on MUTAG in terms of ACC and ARI, and

with 1:47%, 5:66% and 14:91% advantages on BZR in

terms of ACC, NMI, and ARI. This fully demonstrates the

effectiveness of our method. Compared with graph kernel-

based approaches, DGLC is more general for different

types of graph data. Compared with the latest unsupervised

graph representation learning approaches, DGLC has a

clear clustering objective in the optimization and thus tends

to learn clustering-oriented graph-level representations and

achieves state-of-the-art performance.

Table 2 Information of the six benchmark datasets

Dataset name Number of graphs Range of nodes Average nodes Range of edges Average edges Classes

MUTAG 188 [10–28] 17.93 [20–66] 19.79 2

PTC-MR 344 [2–64] 14.29 [2–142] 14.69 2

PTC-MM 336 [2–64] 13.97 [2–142] 14.32 2

BZR 405 [13–57] 35.75 [26–120] 38.36 2

ENZYMES 600 [2–126] 32.63 [2–298] 62.14 6

COX2 467 [32–56] 41.22 [68–118] 43.45 2
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4.4 Qualitative study

In this section, we conduct a qualitative study to provide a

visual comparison of graph-level clustering. Specifically,

we compare our method with several state-of-the-art

unsupervised graph representation learning methods

including InfoGraph, GWF, GraphCL, and JOAO by uti-

lizing t-SNE [70] and visualize their learned graph-level

representations on MUTAG and ENZYMES. The visual-

ization results are shown in Fig. 1.

Table 3 Clustering performance

(ACC, NMI, ARI) on MUTAG

and PTC-MR

Method MUTAG PTC-MR

ACC NMI ARI ACC NMI ARI

Graph kernel followed by spectral clustering (SC)

RW [30]?SC 77.65±0.00 30.81±0.00 30.26±0.00 56.98±0.00 0.63±0.00 1.25±0.00

WL [49]?SC 73.40±0.00 14.50±0.00 21.20±0.00 52.91±0.00 0.23±0.00 0.05±0.00

WL-OA [72]?SC 67.55±0.00 19.64±0.00 11.40±0.00 59.30±0.00 1.77±0.00 2.95±0.00

SP [58]?SC 72.87±0.00 10.24±0.00 15.95±0.00 56.69±0.00 1.04±0.00 0.50±0.00

LT [73]?SC 56.60±4.88 3.09±1.38 �0.62±0.63 55.17±1.32 0.40±0.65 0.19±0.52

GK [57]?SC 67.02±0.00 1.74±0.00 1.04±0.00 56.40±0.00 1.32±0.00 0.31±0.00

Unsupervised graph representation learning followed by k-means (KM) and SC

InfoGraph [37]?KM 77.95±1.41 35.22±3.47 30.95±3.03 54.79±0.68 0.49±0.35 0.28±0.21

InfoGraph [37]?SC 72.58±4.83 28.68±4.93 19.85±5.91 56.10±0.33 1.50±0.26 0.20±0.13

GWF [74]?KM 66.94±7.68 12.46±9.31 13.32±10.53 56.33±3.52 1.09±0.88 1.65±1.50

GWF [74]?SC 73.92±4.30 18.35±3.85 24.48±4.69 55.32±4.03 0.89±0.84 1.49±1.44

GraphCL [65]?KM 77.07±1.21 35.69±2.83 28.99±2.65 54.33±0.76 1.15±0.55 0.16±0.29

GraphCL [65]?SC 73.22±2.66 32.19±2.05 23.44±2.45 56.13±0.42 1.31±0.30 1.17±0.24

JOAO [66]?KM 79.20±0.72 36.32±3.03 33.74±1.65 56.39±0.18 0.53±0.21 0.41±0.01

JOAO [66]?SC 70.72±2.85 27.73±0.23 17.12±2.03 56.16±0.22 1.03±0.33 0.19±0.11

DGLC(Ours) 84.68±0.89 35.75±2.51 47.01±2.64 60.93±0.57 2.98±0.43 4.29±0.52

The best result is highlighted in bold

Table 4 Clustering performance

(ACC, NMI, ARI) on PTC-MM

and BZR

Method PTC-MM BZR

ACC NMI ARI ACC NMI ARI

Graph kernel followed by spectral clustering (SC)

RW [30]?SC 60.71±0.00 0.97±0.00 2.91±0.00 64.69±0.00 0.00±0.00 �0.15±0.00

WL [49]?SC 62.20±0.00 1.50±0.00 3.87±0.00 75.56±0.00 0.50±0.00 3.76±0.00

WL-OA [72]?SC 63.39±0.00 4.59±0.00 2.26±0.00 69.63±0.00 5.60±0.00 �8.67±0.00

SP [58]?SC 62.20±0.00 1.63±0.00 0.73±0.00 79.51±0.00 4.13±0.00 3.97±0.00

LT [73]?SC 61.19±0.88 0.73±0.55 1.09±1.06 78.35±0.35 0.69±0.28 1.12±1.03

GK [57]?SC 62.20±0.00 1.63±0.00 0.73±0.00 61.23±3.36 1.06±1.21 3.13±3.74

Unsupervised graph representation learning followed by k -means (KM) and SC

InfoGraph [37]?KM 61.48±1.03 2.35±0.83 3.61±1.45 63.62±2.41 1.59±0.95 2.39±1.44

InfoGraph [37]?SC 61.96±1.53 2.12±0.99 4.55±0.83 73.53±2.66 3.66±2.52 5.04±3.12

GWF [74]?KM 53.37±3.18 0.30±0.37 0.38±1.09 53.00±0.31 3.42±0.45 �0.76±0.05

GWF [74]?SC 53.02±1.66 0.36±0.28 0.21±0.09 52.76±0.80 3.47±1.16 �0.71±0.32

GraphCL [65]?KM 58.93±0.74 0.27±0.15 0.60±0.14 71.43±4.09 1.04±0.77 3.07±1.03

GraphCL [65]?SC 62.09±0.56 2.14±0.43 3.36±0.87 72.88±1.66 1.90±0.38 3.47±0.59

JOAO [66]?KM 59.04±0.52 0.21±0.14 0.98±0.41 72.64±4.26 1.37±1.14 4.01±3.39

JOAO [66]?SC 62.41±0.80 2.00±0.78 4.28±1.34 72.98±1.59 2.75±1.30 5.62±3.74

DGLC(Ours) 63.30±0.81 2.70±0.45 5.53±0.61 80.98±0.60 9.79±0.92 20.53±1.84

The best result is highlighted in bold
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We can observe that compared with other methods,

DGLC explicitly reveals a more compact intra-class

structure and more distinct inter-class discrepancy. For

example, the learned representations of the two classes in

MUTAG are more separated in our method compared to

others. Besides, we can find that InfoGraph, GraphCL, and

JOAO fail to capture good clustering structures for

ENZYMES, while GWF and ours do. In general, the

visualization results of the learned graph-level representa-

tions also support the effectiveness of our method.

4.5 Parameter sensitivity analysis and ablation
study

To evaluate the robustness of DGLC and the effectiveness

of each component, we conduct the parameter sensitivity

analysis and ablation study.

4.5.1 Parameter sensitivity analysis

We analyze the sensitivity of DGLC to the hyperparame-

ters, i.e., the hidden dimension dh of GNN layers, the

embedding dimension dz of the clustering layer, and the

Table 5 Clustering performance

(ACC, NMI, ARI) on

ENZYMES and COX2

Method ENZYMES COX2

ACC NMI ARI ACC NMI ARI

Graph kernel followed by spectral clustering (SC)

RW [30]?SC 17.00±0.00 0.66±0.00 0.25±0.00 51.31±0.00 0.70±0.00 �0.92±0.00

WL [49]?SC 21.00±0.00 3.09±0.00 1.48±0.00 50.54±0.00 0.51±0.00 �0.40±0.00

WL-OA [72]?SC 20.00±0.00 1.35±0.00 0.32±0.00 50.75±0.00 0.51±0.00 �0.37±0.00

SP [58]?SC 22.00±0.00 2.57±0.00 1.69±0.00 52.03±0.00 0.13±0.00 0.01±0.00

LT [73]?SC 17.00±0.09 0.42±0.11 0.00±0.00 77.52±0.59 0.26±0.34 0.17±0.71

GK [57]?SC 17.07±0.13 0.80±0.25 0.00±0.00 66.17±0.00 0.02±0.00 0.08±0.17

Unsupervised graph representation learning followed by k -means (KM) and SC

InfoGraph [37]?KM 22.06±0.98 2.40±0.45 1.25±0.52 56.74±3.04 3.30±0.60 0.17±0.10

InfoGraph [37]?SC 23.75±0.50 4.64±0.65 2.23±0.41 70.37±2.01 3.56± 0.99 1.92±1.67

GWF [74]?KM 28.55±0.20 6.02±0.55 3.16± 0.20 57.60±4.11 1.50±0.13 2.08±1.80

GWF [74]?SC 25.66±1.57 5.24±1.28 1.78±0.61 58.83±4.46 1.16±0.41 1.45±1.21

GraphCL [65]?KM 21.50±0.22 1.55±0.12 0.90±0.09 68.88±0.59 1.05±0.21 0.44±0.57

GraphCL [65]?SC 25.28±0.28 4.75±0.36 2.03±0.26 75.01±2.12 1.24±0.37 2.39±2.28

JOAO [66]?KM 21.66±0.37 1.60±0.01 0.94±0.02 70.56±2.03 1.19±0.34 0.44±0.43

JOAO [66]?SC 24.65±0.44 4.85±0.37 2.07±0.18 76.46±0.61 1.43±0.77 2.35±2.49

DGLC(Ours) 27.08±1.49 6.39±1.09 2.86±0.80 78.28±0.17 2.38±0.99 6.79±3.37

The best result is highlighted in bold

Fig. 1 t-SNE visualization of the learned graph-level representations of our methods and other unsupervised graph representation learning

methods. The first row is the visualization for MUTAG, while the second row is for ENZYMES
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number of GNN layers. Here, we take MUTAG and PTC-

MR datasets as examples to evaluate the influence of the

change of dh and dz values. Specifically, we select the

values of dh in ½16; 32; . . .; 256� and dz in ½5; 10; . . .; 30�,
and the results are shown in Fig. 2.

We can observe that the ACC on both datasets is rela-

tively stable, showing little fluctuation when the values of

parameters vary in a wide range. In contrast, NMI and ARI

are of high performance when the selection of parameters

is moderate. In general, DGLC shows robust performance

against the two parameters. Nevertheless, we recommend

choosing dz from 10 to 25 and dh from 32 to 128 to obtain

better clustering performance in practice. Except for the

ones mentioned above, we further conduct the sensitivity

analysis on the number of GNN hidden layers on three

datasets (MUTAG, PTC-MR, and BZR). We vary the

number of GNN hidden layers in ½2; 3; . . .; 10�. The

experimental results are shown in Fig. 3. It could be seen

that PTC-MR is quite stable for all three metrics. For

MUTAG and BZR, DGLC shows better performance when

setting the number of GNN hidden layers to 4 and 5. In

general, DGLC obtains relatively stable performance at

different numbers of GNN layers, despite fluctuations at

some specific fetch values.

4.5.2 Ablation study

In this section, we conduct experiments to evaluate the

influence of each proposed strategy on our method.

Specifically, we construct four degradation models of our

method by, respectively, removing some components of it.

There are:

• DGLCd1: We remove the clustering loss and joint

training strategy of DGLC and evaluate the model by

performing k-means on the learned graph-level repre-

sentations, i.e., the model can be regarded as InfoGraph

in this way.

• DGLCd2: We keep the clustering loss and joint training

strategy while directly using k-means to produce the

clustering results instead of producing the clustering

labels with the cluster label assignment Q.

• DGLCd3: We degrade DGLC as a two-stage model, i.e.,

we train the model by, respectively, optimizing the

graph representation learning objective and clustering

objective. The clustering results are still obtained from

the graph-level cluster assignment Q in the second

training stage.

Fig. 2 Sensitivity analysis of ACC, NMI, and ARI regarding the

dimension dh of GNN hidden layers and the embedding dimension dz
of clustering layer on MUTAG and PTC-MR datasets. It can be

observed that all three metrics, especially ACC, show relative

robustness against the variation of the hyper-parameter values
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We run experiments on MUTAG and BZR to evaluate

their performance. Table 6 summarizes the experimental

results, from which we have the following observations:

• Both DGLCd2 and DGLCd3 significantly outperform

DGLCd1, which fully suggests that learning clustering-

oriented representations would benefit graph-level

clustering.

• Producing clustering results from the graph-level clus-

ter assignment Q is more reasonable as the clustering

performance degrades when directly performing k-

means on the learned cluster embeddings.

• Joint training with representation learning and cluster-

ing objectives yields better clustering performance. For

example, DGLC outperforms DGLCd3 by 3.20%,

4.86%, and 8.67% in terms of ACC, NMI, and ARI

on MUTAG.

4.6 Computational time comparison

In this section, we demonstrate the time efficiency of

DGLC by comparing the running time with several graph

kernels and unsupervised graph representation learning

baselines. Specifically, for graph kernels, we select RW

[30], WL [49], SP [58] and LT [73] as our competitors. For

unsupervised graph representation learning methods, we

select GWF [74] and InfoGraph [37]. Note that we run 20

epochs for GWF, InfoGraph and DGLC for fair

comparison. Table 7 shows the running times of each

method on six benchmark datasets used in this paper. We

can see that RW, LT, and GWF are quite time-consuming,

especially on datasets like ENZYMES and COX2 which

contain numerous nodes and edges. In contrast, WL, SP,

InfoGraph, and DGLC are much more efficient compared

to them and have comparable time efficiency.

4.7 k-means performance of graph kernels

Here, we provide k-means performance of some Graph

kernels, including, RW [30], WL [49], WL-OA [72], and

SP [58]. The experimental results are shown in Tables 8, 9

and 10. From these tables, we can observe that the graph

kernels plus k-mean exhibit moderate effectiveness and

perform better on some datasets than the SC results shown

in Tables 3, 4 and 5. However, the performance of the

graph kernels plus k-means is still unsatisfactory, as it can

be seen that the performance of the proposed DGLC

method outperforms them significantly.

4.8 Experiment on large-scale dataset

To validate the effectiveness of the proposed method on

large-scale graph datasets, we supplement two more data-

sets in our experiment. Specifically, we choose NCI1,

NCI109, and COLLAB datasets to conduct an experiment,

the detailed information of the three datasets is shown in

Fig. 3 Sensitivity analysis of ACC, NMI, and ARI regarding the number of GNN hidden layers on MUTAG, PTC-MR, and BZR datasets

Table 6 Clustering performance

(ACC, NMI, ARI) on MUTAG

and BZR

Method MUTAG BZR

ACC NMI ARI ACC NMI ARI

DGLCd1 77.95±1.41 35.22±3.47 30.95±3.03 63.62±2.41 1.59±0.95 2.39±1.44

DGLCd2 80.50±2.34 32.52±3.65 37.16±5.53 66.61±3.14 1.98±1.29 4.32±2.54

DGLCd3 81.48±2.31 30.89±3.98 38.34±6.61 73.87±2.58 2.92±2.30 5.35±3.96

DGLC 84.68±0.89 35.75 ±2.51 47.01±2.64 80.98±0.60 9.79±0.92 20.53±1.84

The best result is highlighted in bold
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Table 7 Running time

comparison (in seconds) on the

six benchmark graph datasets

Method MUTAG PTC-MR BZR PTC-MM ENZYMES COX2

RW [30]?SC 12.29 29.29 76.34 25.44 2346.51 2457.56

WL [49]?SC 2.19 4.97 9.57 7.15 13.43 10.65

SP [58]?SC 3.60 5.38 25.49 5.08 53.75 32.39

LT [73]?SC 88.28 160.86 860.70 552.66 9117.17 6016.26

InfoGraph [37]?KM 9.23 10.96 23.42 11.48 29.37 28.99

InfoGraph [37]?SC 35.96 96.60 165.48 101.2 313.70 300.84

GWF [74]?KM 477.48 830.26 2480.76 803.81 3668.92 2945.12

GWF [74]?SC 566.41 911.37 2591.73 896.44 3954.87 3132.67

DGLC 10.16 12.12 25.66 12.84 31.87 30.50

Table 8 Clustering performance

(ACC, NMI, ARI) on MUTAG

and PTC-MR

Method MUTAG PTC-MR

ACC NMI ARI ACC NMI ARI

Graph kernel followed by k-means (KM)

RW [30]?KM 77.66±0.00 30.82±0.00 30.26±0.00 51.16±0.00 0.19±0.00 �0.55±0.00

WL [49]?KM 73.94±0.00 15.51±0.00 22.25±0.00 57.56±0.00 1.10±0.00 1.89±0.00

WL-OA [72]?KM 73.94±0.00 16.92±0.00 22.42±0.00 55.81±0.00 0.59±0.00 0.99±0.00

SP [58]?KM 76.06±0.00 15.38±0.00 25.11±0.00 59.30±0.00 1.87±0.00 2.73±0.00

DGLC(Ours) 84.68±0.89 35.75±2.51 47.01±2.64 60.93±0.57 2.98±0.43 4.29±0.52

The best result is highlighted in bold

Table 9 Clustering performance

(ACC, NMI, ARI) on PTC-MM

and BZR

Method PTC-MM BZR

ACC NMI ARI ACC NMI ARI

Graph kernel followed by k-means (KM)

RW [30]?KM 55.06±0.00 0.02±0.00 0.00±0.00 58.52±0.00 0.19±0.00 �1.55±0.00

WL [49]?KM 58.63±0.00 0.82±0.00 2.15±0.00 68.15±0.00 0.98±0.00 5.17±0.00

WL-OA [72]?KM 58.04±0.00 0.81±0.00 1.93±0.00 67.90±0.00 2.17±0.00 �6.78±0.00

SP [58]?KM 61.01±0.00 0.85±0.00 2.67±0.00 65.43±0.00 0.27±0.00 2.36±0.00

DGLC(Ours) 63.30±0.81 2.70±0.45 5.53±0.61 80.98±0.60 9.79±0.92 20.53±1.84

The best result is highlighted in bold

Table 10 Clustering

performance (ACC, NMI, ARI)

on ENZYMES and COX2

Method ENZYMES COX2

ACC NMI ARI ACC NMI ARI

Graph kernel followed by k-means (KM)

RW [30]?KM 23.17±0.00 2.50±0.00 1.74±0.00 53.96±0.00 0.60±0.00 �1.68±0.00

WL [49]?KM 21.50±0.00 2.18±0.00 0.96±0.00 50.96±0.00 0.54±0.00 �0.33±0.00

WL-OA [72]?KM 20.83±0.00 1.68±0.00 0.55±0.00 50.75±0.00 0.51±0.00 �0.37±0.00

SP [58]?KM 22.17±0.00 2.79±0.00 1.70±0.00 52.03±0.00 0.13±0.00 0.01±0.00

DGLC(Ours) 27.08±1.49 6.39±1.09 2.86± 0.80 78.28±0.17 2.38±0.99 6.79±3.37

The best result is highlighted in bold
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Table 11. The experiment results are shown in Tables 12

and 13. We can see that almost all graph kernels show low

efficiency and bad clustering performance when handling

large-scale datasets, some of them are too time-consuming.

While the proposed DGLC method shows superiority

compared with graph kernels and graph representation

learning methods. DGLC obtains the best clustering per-

formance in most cases. Besides, the experiment on

Table 11 Information of the

three large-scale datasets
Dataset name Number of graphs Average nodes Average edges Classes

NCI1 4,110 29.87 32.30 2

NCI109 4,127 14.29 14.69 2

COLLAB 5,000 74.49 2457.78 3

Table 12 Clustering

performance (ACC, NMI, ARI)

on NCI1 and NCI109

Method NCI1 NCI109

ACC NMI ARI ACC NMI ARI

Graph kernel followed by spectral clustering (SC)

RW [30]?SC N/A N/A N/A N/A N/A N/A

WL [49]?SC 50.05±0.00 0.00±0.00 0.00±0.00 50.39±0.00 0.01±0.00 0.00±0.00

SP [58]?SC 50.10±0.00 0.10±0.00 0.00±0.00 52.26±0.00 0.33±0.00 0.19±0.00

LT [73]?SC N/A N/A N/A 50.47±0.29 0.01±0.01 �0.01±0.01

Unsupervised graph representation learning followed by k-means (KM) and SC

InfoGraph [37]?KM 54.11±2.15 1.28±1.11 0.85±0.87 54.38±1.85 1.25±0.74 0.89±0.68

InfoGraph [37]?SC 54.87±1.68 0.93±0.56 1.04±0.76 54.67±1.93 1.08±0.52 1.00±0.80

GraphCL [65]?KM 55.37±1.66 0.47±0.28 0.99±0.82 55.37±1.68 1.79±0.93 2.11±1.44

GraphCL [65]?SC 55.93±1.24 0.61±0.63 1.08±0.79 56.29±2.24 2.12±1.16 2.48 ±2.79

JOAO [66]?KM 51.12±0.37 0.43±0.18 0.05±0.03 56.20±0.58 1.73±0.72 1.54±0.28

JOAO [66]?SC 51.48±2.98 0.88±1.22 0.40±1.17 56.30±0.85 4.61±0.43 1.81±0.44

DGLC(Ours) 57.69±2.31 2.50±0.89 2.56±1.39 56.36±2.31 1.94±0.89 1.81±1.38

The best result is highlighted in bold. N/A denotes the results are unavailable (out of memory or the running

time over 24 h)

Table 13 Clustering

performance (ACC, NMI, ARI)

on COLLAB

Method COLLAB

ACC NMI ARI

Graph kernel followed by spectral clustering (SC)

RW [30]?SC N/A N/A N/A

WL [49]?SC 53.20±0.00 1.96±0.00 0.53±0.00

SP [58]?SC 48.72±0.00 17.91±0.00 13.93±0.00

LT [73]?SC N/A N/A N/A

Unsupervised graph representation learning followed by k-means (KM) and SC

InfoGraph [37]?KM 59.64±1.78 14.40±2.93 6.61±2.27

InfoGraph [37]?SC 60.92±2.49 15.37±3.28 9.33±3.45

GraphCL [65]?KM 58.02±1.22 17.81±1.94 11.33±0.56

GraphCL [65]?SC 57.83±0.61 16.97±1.25 10.10±0.65

JOAO [66]?KM 58.34±1.46 18.73±2.62 11.06±1.79

JOAO [66]?SC 57.84±0.88 17.12±2.13 10.55±0.84

DGLC(Ours) 61.15±1.44 19.98±1.41 12.17±2.03

The best result is highlighted in bold. N/A denotes the results are unavailable (out of memory or the running

time over 24 h)
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COLLAB, which contains 3 classes, also demonstrates the

effectiveness of the proposed DGLC method in processing

datasets containing more than 2 classes.

5 Conclusion

This work has studied the problem of graph-level cluster-

ing and proposed an end-to-end deep graph-level clustering

method based on deep graph neural networks. The pro-

posed DGLC method leverages the powerful representation

learning capability of GIN and defines an explicit cluster-

ing objective to help learn cluster-favor representations for

graph-level clustering. We compared the proposed method

with two types of baselines, one is based on graph kernels

followed by spectral clustering and the other is based on

graph-level representation learning followed by k-means

and spectral clustering. The experiments on six graph

datasets have shown that our method has much higher

clustering accuracy than the baselines.

Acknowledgements This work is in part supported by the National

Natural Science Foundation of China (Grants No. 62376236 and No.

U21A20472), the Natural Science Foundation of Fujian Province

(Grant No.2020J01130193), and Shenzhen Research Institute of Big

Data (No.T00120210002).

References

1. Newman ME (2006) Modularity and community structure in

networks. Proc Natl Acad Sci 103(23):8577–8582

2. Gilmer J, Schoenholz S.S, Riley P.F, Vinyals O, Dahl G.E (2017)

Neural message passing for quantum chemistry. In: Proceedings

of the international conference on machine learning,

pp 1263–1272 . PMLR

3. LIN YSK, Bashir AK (2023) Keylight: intelligent traffic signal

control method based on improved graph neural network. IEEE

Transactions on Consumer Electronics, 1–1

4. Dong L, Zhang H, Yang K, Zhou D, Shi J, Ma J (2022) Crowd

counting by using top-k relations: a mixed ground-truth CNN

framework. IEEE Trans Consum Electron 68(3):307–316

5. Zhang R, Xie F, Sun R, Huang L, Liu X, Shi J (2022) Spatial-

temporal dynamic semantic graph neural network. Neural Com-

put Appl 34(19):16655–16668

6. Liu L, Zhang H, Zhou D, Shi J (2023) Toward fashion intelli-

gence in the big data era: State-of-the-art and future prospects.

IEEE Trans Consumer Electron, 1–1

7. Wang Y, Cao J, Tao H (2021) Graph convolutional network with

multi-similarity attribute matrices fusion for node classification.

Neural Comput Appl, 1–11

8. Zhang B, Guo X, Tu Z, Zhang J (2022) Graph alternate learning

for robust graph neural networks in node classification. Neural

Comput Appl 34(11):8723–8735

9. Ju W, Qin Y, Yi S, Mao Z, Zheng K, Liu L, Luo X, Zhang M

(2023) Zero-shot node classification with graph contrastive

embedding network. Trans Mach Learn Res

10. Wu Z, Zhang Z, Fan J (2023) Graph convolutional kernel

machine versus graph convolutional networks. Adv Neural

Inform Process Syst

11. Fan J, Tian Z, Zhao M, Chow TWS (2018) Accelerated low-rank

representation for subspace clustering and semi-supervised clas-

sification on large-scale data. Neural Netw 100:39–48

12. Lin Z, Kang Z, Zhang L, Tian L (2021) Multi-view attributed

graph clustering. IEEE Trans Knowledge Data Eng

13. Fan J (2021) Large-scale subspace clustering via k-factorization.

In: Proceedings of the ACM SIGKDD conference on knowledge

discovery & data mining. KDD ’21, pp 342–352. Association for

Computing Machinery, New York, NY, USA

14. Cai J, Fan J, Guo W, Wang S, Zhang Y, Zhang Z (2022) Efficient

deep embedded subspace clustering. In: Proceedings of the IEEE/

CVF conference on computer vision and pattern recognition

(CVPR), pp 1–10

15. Fan J, Tu Y, Zhang Z, Zhao M, Zhang H (2022) A simple

approach to automated spectral clustering. Adv Neural Inform

Process Syst 35:9907–21

16. Gao X, Ma X, Zhang W, Huang J, Li H, Li Y, Cui J (2022) Multi-

view clustering with self-representation and structural constraint.

IEEE Trans Big Data 8(4):882–893

17. Cai J, Wang S, Xu C, Guo W (2022) Unsupervised deep clus-

tering via contractive feature representation and focal loss. Pat-

tern Recogn 123:108386

18. Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S (2006) Graph

embedding and extensions: a general framework for dimension-

ality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

19. Cai H, Zheng VW, Chang KC-C (2018) A comprehensive survey

of graph embedding: problems, techniques, and applications.

IEEE Trans Knowl Data Eng 30(9):1616–1637

20. Li T, Zhang Y, Liu H, Xue G, Liu L (2022) Fast compressive

spectral clustering for large-scale sparse graph. IEEE Trans Big

Data 8(1):193–202

21. Subramanya A, Bilmes JA (2009) Entropic graph regularization

in non-parametric semi-supervised classification. Adv Neural

Inform Process Syst, 22

22. Bhagat S, Cormode G, Muthukrishnan S (2011) Node classifi-

cation in social networks. In: Social network data analytics,

pp 115–148. Springer, ???

23. Kipf TN, Welling M (2017) Semi-supervised classification with

graph convolutional networks. Proceedings of the international

conference on learning representations

24. Xu K, Hu W, Leskovec J, Jegelka S (2019) How powerful are

graph neural networks? In: Proceedings of the international

conference on learning representations

25. Chen Z, Fu L, Xiao S, Wang S, Plant C, Guo W (2023) Multi-

view graph convolutional networks with differentiable node

selection. ACM Trans Knowl Discov Data 18(1):1–21

26. Wang C, Pan S, Hu R, Long G, Jiang J, Zhang C (2019)

Attributed graph clustering: a deep attentional embedding

approach. In: Proceedings of the 28th international joint confer-

ence on artificial intelligence, pp 3670–3676

27. Bo D, Wang X, Shi C, Zhu M, Lu E, Cui P (2020) Structural deep

clustering network. In: Proceedings of the web conference,

pp 1400–1410

28. Zhu H, Koniusz P (2021) Simple spectral graph convolution. In:

Proceedings of the international conference on learning

representations

29. Guo L, Dai Q (2022) End-to-end variational graph clustering with

local structural preservation. Neural Comput Appl, 1–16

30. Vishwanathan SVN, Schraudolph NN, Kondor R, Borgwardt KM

(2010) Graph kernels. J Mach Learn Res 11:1201–1242

Neural Computing and Applications

123



31. Yanardag P, Vishwanathan S (2015) Deep graph kernels. In:

Proceedings of the 21th ACM SIGKDD international conference

on knowledge discovery & data mining, pp 1365–1374

32. Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020) A

comprehensive survey on graph neural networks. IEEE Trans

Neural Netw Learn Syst 32(1):4–24

33. Rong Y, Xu T, Huang J, Huang W, Cheng H, Ma Y, Wang Y,

Derr T, Wu L, Ma T (2020) Deep graph learning: foundations,

advances and applications. In: Proceedings of the 26th ACM

SIGKDD international conference on knowledge discovery &

data mining, pp 3555–3556

34. Sun Z, Ding C, Fan J (2023) Lovász principle for unsupervised

graph representation learning. Adv Neural Inform Process Syst

35. Chen Z, Fu L, Yao J, Guo W, Plant C, Wang S (2023) Learnable

graph convolutional network and feature fusion for multi-view

learning. Inform Fusion 95:109–119

36. Zhang M, Cui Z, Neumann M, Chen Y (2018) An end-to-end

deep learning architecture for graph classification. In: Proceed-

ings of the AAAI conference on artificial intelligence, vol 32

37. Sun FY, Hoffman J, Verma V, Tang J (2020) Infograph: unsu-

pervised and semi-supervised graph-level representation learning

via mutual information maximization. In: Proceedings of the

international conference on learning representations

38. Doshi S, Chepuri SP (2022) Graph neural networks with parallel

neighborhood aggregations for graph classification. IEEE

Transactions on signal processing, 1–14

39. Cai J, Zhang Y, Fan J (2023) Self-discriminative modeling for

anomalous graph detection. arXiv preprint arXiv:2310.06261

40. Ju W, Gu Y, Chen B, Sun G, Qin Y, Liu X, Luo X, Zhang M

(2023) Glcc: a general framework for graph-level clustering. In:

Proceedings of the AAAI conference on artificial intelligence, vol

37, pp 4391–4399

41. Ng A, Jordan M, Weiss Y (2001) On spectral clustering: Analysis

and an algorithm. Adv Neural Inform Process Syst, 14

42. Fan J, Chow TW (2017) Sparse subspace clustering for data with

missing entries and high-rank matrix completion. Neural Netw

93:36–44

43. Xu K, Tang K, Su Z (2023) Deep multi-view subspace clustering

via structure-preserved multi-scale features fusion. Neural Com-

put Appl 35(4):3203–3219

44. Qiao D, Ding C, Fan J (2023) Federated spectral clustering via

secure similarity reconstruction. Adv Neural Inform Process Syst

45. Kondor R, Pan H (2016) The multiscale laplacian graph kernel.

Adv Neural Inform Process Syst, 29

46. Du SS, Hou K, Salakhutdinov RR, Poczos B, Wang R, Xu K

(2019) Graph neural tangent kernel: Fusing graph neural net-

works with graph kernels. Adv Neural Inform Process Syst, 32

47. Togninalli M, Ghisu E, Llinares-López F, Rieck B, Borgwardt K
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