
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 1

Deep Masked Graph Node Clustering
Jinbin Yang , Jinyu Cai , Luying Zhong , Yueyang Pi , and Shiping Wang , Senior Member, IEEE

Abstract—In recent years, reconstructing features and learn-
ing node representations by graph autoencoders (GAE) have
attracted much attention in deep graph node clustering. However,
existing works often overemphasize structural information and
overlook the impact of real-world prevalent noise on feature
learning and clustering with graph data, which may be detrimen-
tal to robust training. To address these issues, the utilization of a
masking strategy that specifically focuses on feature reconstruc-
tion may mitigate these limitations. In this article, we propose a
graph node clustering generative method named deep masked
graph node clustering (DMGNC), which leverages a masked
autoencoder to effectively reconstruct node features, enabling
the discovery of latent information crucial for accurate node
clustering. Additionally, a clustering self-optimization module is
designed to guide the iterative update of our end-to-end clustering
framework. Further, we extend the masked graph autoencoder
(MGA) and develop a contrastive method called deep masked
graph node contrastive clustering (DMGNCC), which applies the
MGA to graph node contrastive learning at both the node level
and the class level in a united model. Extensive experimental
results on real-world graph benchmark datasets demonstrate the
effectiveness and superiority of the proposed method.

Index Terms—Deep clustering, deep learning, graph node
clustering, neural networks, unsupervised learning.

I. INTRODUCTION

GRAPH data have become increasingly widespread and
significant in society today. They are involved in various

fields such as machine learning [1] and data mining [2]. In these
fields, graph node clustering is a fundamental problem in graph
analysis and has numerous applications in recommender sys-
tems [3] and social network [4]. The goal of graph node clus-
tering is to assign similar nodes to the same class based on
edge weights or edge distances, resulting in nodes within the
same class as similar as possible and nodes in different classes
being as dissimilar as possible. Due to the complexity and
irregularity of graph data, traditional clustering algorithms are
often incapable of dealing effectively in this field. As a result,
graph node clustering has become a popular research topic.

Manuscript received 17 May 2023; revised 7 April 2024; accepted 30 April
2024. This work was supported in part by the National Natural Science
Foundation of China under Grant U21A20472 and Grant 62276065, and in
part by the National Key Research and Development Plan of China under
Grant 2021YFB3600503. (Jinbin Yang and Jinyu Cai contributed equally to
this work.) (Corresponding author: Shiping Wang.)

The authors are with the College of Computer and Data Science and
Fujian Provincial Key Laboratory of Network Computing and Intelligent
Information Processing, Fuzhou University, Fuzhou 350116, China (e-mail:
yangjinbinfzu@163.com; Jinyucai1995@gmail.com; luyingzhongfzu@163.
com; piyueyangcc@163.com; shipingwangphd@163.com).

Digital Object Identifier 10.1109/TCSS.2024.3401218

The primary challenge of graph node clustering lies in the
representation of nodes. Nodes typically contain both attribute
features and relationship information, making it challenging to
find suitable representations. Traditional clustering algorithms
designed for Euclidean data, such as k-means-based [5], [6],
[7], [8], [9] and spectral clustering-based approaches [10], [11],
[12], are not directly applicable to graph data due to the complex
structure and connectivity of graphs. They ignore the structure
of the graph or the characteristics of the nodes, limiting their
ability to effectively utilize the interaction between node con-
tent information and structural information in graph data. Graph
theory and game theory [13], as well as the belief dynamics
model [14], [15], can effectively achieve graph clustering. How-
ever, compared to traditional clustering problems, graph node
clustering requires consideration of node similarity and relative
positions, necessitating the use of specific graph embedding
techniques to map nodes to a low-dimensional vector space for
clustering. Recently, deep learning methods [12], [16], [17],
[18], [19], [20], [21], [22] have shown superior performance
against traditional methods in graph clustering tasks, and graph
neural networks [23], [24], [25], [26], [27] have emerged as
a popular approach for learning node representations. Graph
neural networks capture both local and global structural prop-
erties of the graph and can be trained both using supervised
and unsupervised learning methods to predict node labels or
cluster assignments. The most widely used model for graph
neural networks is the graph autoencoder (GAE) [28], [29],
which compresses and reconstructs input data by encoding them
into a low-dimensional representation and then decoding them
back into the original space to learn the node representations.
However, traditional GAEs often encounter the issue of over-
smoothing [30], where the learned node representations become
too similar, leading to a loss of discrimination between nodes.
Measuring the similarity between nodes is another challenge in
graph node clustering. Unlike traditional clustering problems
where Euclidean distance or cosine similarity are commonly
utilized, graph node clustering requires a specific similarity
measure to capture the nonlinear relationships between nodes.

Currently, deep graph node clustering methods [31] can
be broadly classified into two categories: generative and con-
trastive methods. Generative graph clustering methods typically
apply GAEs to reconstruct the structural information or node
features of the graph. Recently, the trend has been to reconstruct
the adjacency matrix of the graph data to further explore the
structural information of the graph. For example, Pan et al. [32]
proposed an adversarial graph embedding framework for graph
data that trained decoders to reconstruct the graph structure.
Similarly, Wang et al. [33] combined an attention mechanism

2329-924X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Fuzhou University. Downloaded on June 07,2024 at 00:48:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4729-7484
https://orcid.org/0000-0003-2241-2754
https://orcid.org/0009-0007-9960-5382
https://orcid.org/0009-0006-6147-3591
https://orcid.org/0000-0001-5195-9682
mailto:yangjinbinfzu@163.com
mailto:Jinyucai1995@gmail.com
mailto:luyingzhongfzu@163.com
mailto:luyingzhongfzu@163.com
mailto:piyueyangcc@163.com
mailto:shipingwangphd@163.com

2 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Fig. 1. Convergence curves of five graph node clustering methods on the
ACM dataset.

with an autoencoder to reconstruct the adjacency matrix by self-
optimization. Tu et al. [34] developed a symmetric GAE to
further reconstruct the adjacency matrix using the latent feature
representation reconstructed by the graph decoder. However,
these methods may overemphasize the structural information
of the graph, while ignoring the importance of node features.

In contrastive methods, the goal is to learn representations
that can distinguish between positive and negative samples.
Positive samples refer to pairs of nodes belonging to the same
cluster, while negative samples are pairs of nodes belonging
to different clusters. The contrastive loss function encourages
the model to map positive samples close together in the repre-
sentation space while pushing negative samples farther apart.
To improve the quality of learned representations, contrastive
methods often use various data augmentation techniques such
as masked attributes, subgraph sampling, and randomly added
or removed edges for data augmentation. Zhu et al. [35] de-
signed an augmentation scheme based on the node centrality
measures and added more noise to unimportant node features
to achieve adaptive augmentation contrast. Zhao et al. [36]
developed a unified graph debiased contrastive learning frame-
work that jointly performed graph representation learning and
clustering tasks.

Although optimal performance has been achieved in prior
research, however, we found that existing works overemphasize
structural information and the feature reconstruction without
masking may not be conducive to robust training. We illustrate
this phenomenon on the ACM dataset in Fig. 1. The previously
mentioned methods, ARVGA [32], DAEGC [33], and DFCN
[34], for reconstructing the adjacency matrix exhibit fluctuat-
ing objective values and unstable convergence during training,
which could lead to poor robust training of the learned node
representations. In addition, marginalized graph autoencoder
(MGAE) proposed by Wang et al. [37] utilized marginalized
graph convolutional networks (GCNs) to corrupt the network
node content though, as well as features of marginalized cor-
ruption. However, the same instability issue persists when uti-
lizing GAEs. Recently, using masking strategies to reconstruct

features, so that the model can learn and provide more poten-
tial information for unsupervised tasks has great potential and
has been widely verified and applied in computer vision [38],
[39] and natural language processing [40]. A self-supervised
masked graph autoencoder (MGA) [41] experimentally found
that simply reconstructing node features can enable the model
to learn sufficient valid information, thereby providing better
assistance for downstream tasks. However, the above methods
have mainly been proposed for tasks such as node classifi-
cation and transfer learning, while the application of masked
feature reconstruction in deep graph node clustering remains
unexplored. Based on these, we propose a generative method
named deep masked graph node clustering (DMGNC), which is
capable of robust reconstruction and effective clustering to ad-
dress the two challenges pointed out above. As shown in Fig. 2,
the framework of DMGNC mainly consists of a masked graph
representation learning module and a self-optimizing clustering
module. In the masked graph representation learning module,
a portion of nodes are randomly selected, and their features are
replaced with masks to learn latent representations by encoder
and reconstruct features by decoder. In the self-optimizing clus-
tering module, the encoder-learned and remasked latent repre-
sentations are unified in an end-to-end unified framework and
use the self-training module to guide the optimization process
with soft labels for better training process feedback. In addition,
we propose a contrastive method called deep masked graph
node contrastive clustering (DMGNCC) based on the MGA of
DMGNC, which applies the MGA to compare the similarity of
positive and negative samples, respectively. As shown in Fig. 3,
the framework of DMGNCC is composed of a pair-masked
network (PMN), a node-level contrastive module (NCM), and
a class-level contrastive module (CCM). Two data-augmented
graph views are constructed by PMN, and then node-level and
class-level contrastive learning are performed in an end-to-end
model, respectively.

The main contributions can be summarized as follows.
1) Propose a DMGNC that uses the masked latent rep-

resentation and performs feature reconstruction in an
end-to-end unified framework to learn graph embed-
dings combined with auxiliary target distributions and
clustering results.

2) Present an extended version, proposing a DMGNCC, us-
ing MGA for feature reconstruction of positive and neg-
ative samples and graph node contrastive learning from
node level and class level.

3) The proposed methods integrate structural and informa-
tional features more efficiently and enable more effective
and robust training under the prevalent noise in the real-
world scenario.

4) Extensive experiments on six datasets demonstrate that
our methods are competitive and significantly outperform
graph node clustering baselines.

The rest of this article is arranged as follows. In Section II, we
review related research on generative graph node clustering and
contrastive graph node clustering. In Section III, we present the
proposed DMGNC and DMGNCC methods. In Section IV, ex-
tensive experiments utilizing real-world datasets are conducted

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Fuzhou University. Downloaded on June 07,2024 at 00:48:33 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DEEP MASKED GRAPH NODE CLUSTERING 3

Fig. 2. Architecture of the proposed DMGNC, which is a joint framework for mask feature reconstruction and performing clustering tasks. The framework
involves two essential parts: mask graph representation learning module and self-optimizing clustering module. The mask graph representation learning
module performs masking, encoding, remasking, and decoding operations by randomly selecting nodes, respectively. The encoder-learned and remasked latent
representations are then unified and optimized in the self-optimizing clustering module.

Fig. 3. Architecture of the proposed DMGNCC, which is a unified framework for contrastive clustering learning in masked networks using two data-
augmented views. The framework involves three essential parts: PMN, NCM, and CCM. Mask feature operations are performed in a parameter-sharing
pairwise mask network to learn the node embedding representations of the two augmented views, which are then optimized uniformly from node-level
contrastive loss to class-level contrastive loss, respectively.

to validate the clustering performance of the proposed methods.
In Section V, this article is concluded.

II. RELATED WORK

A. Generative Graph Node Clustering

Generative methods learn representations of graph nodes
mainly by designing loss functions in the output space. GAE
[42] is a widely used generative method. The main idea of
GAE is to employ a GCN [43] as an encoder to embed the

graph into a low-dimensional vector space while preserving the
graph structure and node attributes, and finally to explore po-
tential representations by reconstructing the adjacency matrix.
Subsequently, many effective applications have been proposed
based on GAE. Wang et al. [33] proposed deep attention-
embedded graph clustering that combined attention mecha-
nisms into graph clustering and employed autoencoders to learn
latent representations. Park et al. [44] presented a symmet-
ric graph convolutional autoencoder with Laplacian smooth-
ing for the encoder and Laplacian sharpening for the decoder,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Fuzhou University. Downloaded on June 07,2024 at 00:48:33 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

which generated a low-dimensional latent representation from
a graph. Wang et al. [37] added marginalization mechanisms
to the GAE, dynamically adjusting the topology and content
information by adding random noise. Although these methods
have achieved better clustering results, there is still an over-
smoothing phenomenon similar to GAE, where the learned
node representations tend to be similar, resulting in a negative
impact on the clustering performance. Bo et al. [45] have since
proposed to jointly learn GAEs within a unified framework
to alleviate the over-smoothing problem through information
transfer operations. He et al. [46] developed an adaptive graph
convolutional clustering model to update the graph structure
and data representation layers. However, these works overem-
phasize the structural information of nodes, and robust training
may be better served by using masked feature reconstruction.

B. Contrastive Graph Node Clustering

Due to the remarkable success of contrastive learning in the
field of computer vision [47], [48], its application to graph node
clustering has gradually gained favor. Contrastive learning pri-
marily employs data augmentation to obtain different relevant
views of the given data and constructs objective functions that
maximize the consistency between positive and negative sam-
ples in the latent space. Currently, a variety of graph augmen-
tation techniques, including node dropping, edge modification,
and subgraph construction, have been introduced in contrastive
learning for graph data. Additionally, previous work [49] has
indicated that there is no single data augmentation technique
for graphs that consistently outperforms others. Velicković et al.
[50] was inspired by Deep InfoMax [51] and aimed to learn
node representations by maximizing the mutual information be-
tween local patches of a graph. Similarly, Hassani and Ahmadi
[52] used InfoMax loss to maximize the mutual information
between different views for learning node representations. Zhu
et al. [53] augmented views by randomly perturbing nodes or
edges and their features and learns node representations by
maximizing the consistency between two views. Xia et al. [54]
bridged augmented views by operations such as pulling positive
samples closer and pushing negative samples further. Liu et al.
[55] exploited the data itself to generate an optimal graph struc-
ture and used contrastive learning to maximize the agreement
between the learned topology and the self-augmented learning
objective. Devvrit et al. [56] proposed a method for scalable
graph clustering with side information on node features, capable
of utilizing contrastive learning with graph neural networks
and node features to learn clusterable features. Although these
methods have achieved promising results, there is a lack of
research that combines MGA with contrastive learning, which
could potentially lead to even better performance in graph
node clustering.

III. PROPOSED METHOD

First, we present the frequently used mathematical notations.
An undirected graph is represented as G = (V, E ,X) with N
number of nodes, where V = {v1, . . . , vN} and E = {eij} are
a set of nodes and a set of edges between nodes, respectively.

TABLE I
GLOSSARY OF NOTATIONS IN THIS ARTICLE

Notations Descriptions

G = (V, E,X)
A graph G consisting of a set of nodes V ,
a set of edges E and a feature matrix X

vi A node vi ∈ V
eij An edge eij ∈ E
k Number of clusters
N The number of nodes with N = |V|
d The dimension of node feature vector
xi The d-dimensional feature vector for node vi
A The graph adjacency matrix
fθe Encoder
fθd

Decoder
R Euclidean space
Z Latent representation
X̃ Masked feature matrix
X̃′ Reconstruction feature matrix
Q Clustering result distribution
P Target distribution
γ A hyperparameter of the scaling factor

‖ · ‖ The �2-normalization
α, β, ε Balance coefficient

L Objective function

The feature matrix X= {x1; . . . ;xN} ∈ R
N×d records the fea-

tures of all nodes, where xi ∈ R
d is the d-dimensional feature

vector associated with node vi. The topology of the graph G
can be represented by the adjacency matrix A ∈ {0, 1}N×N .
The notations used in this paper are summarized in Table I.

A. DMGNC

1) Masked Graph Representation Learning Module: The
graph encoder and the graph decoder are denoted as fθe

and fθd
, respectively. Z ∈ R

N×dz is the latent representation
learned by the encoder. Normally, the input of general GAEs
can be expressed as

Z = fθe
(A,X). (1)

Any type of graph neural networks can be utilized as the
backbone of the encoder and decoder. For example, GCN [43]
can effectively capture topological graph information, and GAT
[57] can capture the importance of neighboring nodes applying
an attention mechanism.

Currently, most GAE-based graph node clustering methods
use a combination of reconstructed features and structures to
rebuild the adjacency matrix. Inspired by the masked autoen-
coder, we adopt the reconstruction of the feature matrix using
the adjacency matrix A and the partial observation node feature
matrix X̃.

Specifically, the features of the partial nodes are covered.
A subset Ṽ ⊂ V of nodes is sampled from the set of nodes, and
a token [MASK] is employed to hide the features of each node
in this subset to yield a learnable vector x[M] ∈ R

d. A random
sampling strategy and a large mask ratio are applied to mask the
nodes, which can avoid potential bias centers and reduce redun-
dancy in the attribute graph. After covering some of the node

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Fuzhou University. Downloaded on June 07,2024 at 00:48:33 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DEEP MASKED GRAPH NODE CLUSTERING 5

features, a masked feature matrix X̃= {x̃1; . . . ; x̃N} ∈ R
N×d

is obtained. The masked feature vector can be defined as

x̃i =

{
x[M], vi ∈ Ṽ
xi, vi /∈ Ṽ.

(2)

From the encoder, the latent representation Z1 is derived
from (1).

In generative graph learning methods, either apply fewer
neural networks as decoders or use a relatively simple multi-
layer perception. We follow [41] to utilize a single-layer graph
neural network as a decoder. It enables the recovery of its input
features according to the nodes themselves or even on their
surrounding nodes, which is more conducive for the encoder to
learn high-level latent information. In the decoder, the remask
decoding technique is used to reprocess the output Z1 of the
encoder, which means the nodes in subset Ṽ are reprocessed
with another token (RMASK) with z[M] ∈ R

dz , and the remask-
processed latent representation Z2 is obtained. Remasked latent
representation Z2 is specifically expressed as

z̃i =

{
z[M], vi ∈ Ṽ
zi, vi /∈ Ṽ.

(3)

To further exploit the compressed information of the data and
to take advantage of the masking strategy for the clustering task,
a more complete and robust final representation Ẑ is obtained
by weighting the average and integrating the representation Z1

from the encoder and the remasked representation (RR) Z2

Ẑ= (1 − ε)Z1 + εZ2 (4)

where the fusion coefficient ε is utilized to balance the weight
between Z1 and Z2. In this way, the two parts of the learned
latent representations are effectively integrated.

Hou et al. [41] experimentally pointed out that minimizing
the mean square error loss in feature reconstruction may be
difficult to optimize or may be minimized to near zero, which
is not sufficient for meaningful feature reconstruction. For this
reason, the scale cosine error is used to measure the reconstruc-
tion results. The reconstruction feature matrix X̃′ = fθd

(A,Z1)
derives from the decoder, and then the feature reconstruction
loss formula in the masked graph representation learning mod-
ule is defined as follows:

Lsce =
1

|Ṽ |
∑
v∈Ṽ

(
1 − x�

i x̃i

‖xi‖ · ‖x̃i‖

)γ

, γ ≥ 1 (5)

where γ is a hyperparameter of the scaling factor, which helps
to perform better adaptation for various data.

2) Self-Optimizing Clustering Module: As graph node clus-
tering is an unsupervised task, it cannot provide relevant feed-
back on whether the learned latent representations are well
optimized during training due to the lack of label guidance.
In this regard, to obtain more optimal clustering results and
discriminative representations, we use a clustering loss (CL)
Lclu to optimize the clustering task as a solution.

First, the latent representations learned by the masked
graph representation learning module are input into the self-
optimizing clustering module. Next, for the ith node and the

jth cluster, we measure the similarity between the representa-
tion ẑi and the cluster centroid vector μj using the t-student
distribution, expressed as follows:

qij =
(1 +

∥∥ẑi − μj

∥∥2
/v)−

v+1
2∑k

j′=1(1 +
∥∥ẑi − μj′

∥∥2
/v)−

v+1
2

(6)

where v is the degree of freedom of the t-student distribution, k
represents the number of cluster centers, and qij can be regarded
as the soft cluster assignment of each node, i.e., the probability
that node i is assigned to cluster j. We employ k-means in the
initialization phase of the model to obtain the cluster and the
cluster centroid vector μj based on the representation learned
by the autoencoder.

In addition, it is expected to optimize the data representation
by learning a high-confidence distribution, which can bring the
data representation closer to the cluster center and improve
cohesiveness. Therefore, we derive the target distribution P
using Q as follows:

pij =
q2
ij/

∑N
i=1 qij∑k

j′=1(q
2
ij′/

∑N
i=1 qij′)

(7)

where
∑N

i=1 qij is the soft cluster frequency. Each assignment
in Q is provided with a higher confidence level by normaliza-
tion. The KL divergence between distributions P and Q can be
minimized to facilitate the masked graph representation learn-
ing module learning a better representation of the clustering task
with the following equation:

Lclu = KL(P ||Q) =
∑N

i=1

∑k
j=1 pij log

pij
qij

. (8)

3) Joint Embedding and Clustering Optimization: The
masked graph representation learning module and the self-
optimizing clustering module jointly improve embedding and
clustering learning and the total objective function of our frame-
work is defined as

L= Lsce + αLclu (9)

where Lsce and Lclu are the feature reconstruction loss and
the CL, respectively, and α is a hyperparameter to control the
tradeoff between the two terms.

To explicitly clarify the whole process, the training proce-
dures of DMGNC are summarized in Algorithm 1.

B. DMGNCC

Our method draws inspiration from the concept of contrastive
learning proposed in [58] and [59], which learns data represen-
tations by contrasting positive and negative samples, thereby
improving clustering performance. We have expanded this idea
by applying contrastive learning not only at the graph node
level but also by introducing an MGA and considering contrasts
at the clustering level, to further enhance the accuracy and
robustness of clustering. Although our work is based on the core
ideas of these two preliminary studies, our research differs in
objectives, methods, and application scenarios. The contrastive
clustering framework we propose is an important supplement

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Fuzhou University. Downloaded on June 07,2024 at 00:48:33 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

and extension to these previous methods, aimed at solving the
clustering problem of static graph data through a combination
of node-level and class-level contrastive learning.

Specifically, DMGNCC consists of three jointly learned com-
ponents: a PMN, a NCM, and a CCM. In PMN, we perform data
augmentation on the data to construct data pairs, then apply
a masked graph autocoder to extract the corresponding fea-
tures, and finally perform node-level and class-level contrastive
learning in NCM and CCM, respectively. These modules are
described in detail as follows.

1) PMN: It can be seen from the previous research that in
contrastive learning, an appropriate choice of data augmentation
strategy can contribute to good performance in downstream
tasks. Specifically, given a graph data G, we perform two types
of data augmentations. We randomly remove a portion of edges
from the original graph at the structural level. In addition, we
mask node features or add Gaussian noise at the attribute level.
These operations result in the generation of two graph views,
which can be expressed as G̃a = T a(G) and G̃b = T b(G).

Subsequently, a shared deep masked graph network f(·) is
used to extract features from two augmented graph views via
Ha = f(G̃a) and Hb = f(G̃b). This deep masked graph net-
work is similar to the masked graph representation learning
module of DMGNC. It covers the node features with a cer-
tain mask rate in the PMN with shared weights. This method
can help the model learn more robust feature representations,
reduce the risk of overfitting, and facilitate more accurate
data clustering.

2) Node-Level Contrastive Module: The key idea of graph
node contrastive learning is to exploit the differences between
positive and negative data pairs to help the model learn more ro-
bust node representations, which can better handle the similarity
and dissimilarity between nodes. Specifically, it encourages
representations of similar pairs to be closer, while making repre-
sentations of dissimilar pairs more distant. We enable the model
to learn a more discriminative feature representation by max-
imizing the similarity between positive pairs and minimizing
the similarity between negative pairs. A nonlinear multilayer
perceptron gSΘ

(·) is utilized to map features outputs of the
MGA to a subspace for node-level contrastive learning, which
yields Za = gSΘ

(Ha) and Zb = gSΘ
(Hb).

In this work, we take the features of N nodes as samples.
After data augmentation, {xa

1 , . . . ,x
a
N ,xb

1, . . . ,x
b
N} for a total

of 2N samples can be obtained. Given a node feature xi, the
positive pair consists of corresponding node features from two
graph views {xa

i ,x
b
i}, naturally treating the other 2N − 2 pairs

from the two views as negative pairs. We use cosine similarity
to measure the pairwise similarity between samples, i.e.,

cos(zni , z
m
j) =

(zni)
�(zmj)

‖zni ‖‖zmj ‖ (10)

where n,m ∈ {a, b}, i, j ∈ [1, N] and ‖ · ‖is the �2-
normalization. Thereafter, for node feature xi, the
corresponding loss can be calculated by the following

Algorithm 1 Deep Masked Graph Node Clustering

Input: Graph G = (V, E ,X); number of clusters k; number of
iterations T .

Output: Clustering results O.
1: Randomly choose nodes for mask operation;
2: for iterator = 1 −→ T do
3: Obtain the encoder representation Z1 by Eq. (1);
4: Generate the re-masked representation Z2 via Eq. (3),

and gain the final representation Ẑ by Eq. (4);
5: Calculate the loss between the reconstructed features and

the original features via Eq. (5).
6: Compute the KL divergence between distribution P and

Q by Eq. (8);
7: Calculate the overall loss function via Eq. (9);
8: Conduct the back-propagation to update parameters;
9: end for

10: return The clustering results O on distribution Ẑ.

equation:

�ai =−log
exp(cos(zai , zbi)/τ1)∑N

j=1[exp(cos(zai , zaj)/τ1) + exp(cos(zbi , zbj)/τ1)]

(11)

where τ1 > 0 is a temperature parameter. Ultimately, for all
nodes, the node-level contrastive loss can be calculated for each
positive sample pair as follows:

Lnode =
1

2N

∑N
i=1(�

a
i + �bi). (12)

3) Class-Level Contrastive Module: In general, the feature
representation of a node is learned from its neighborhood in-
formation using unsupervised learning methods, which may not
well reflect the true cluster information of the node.

In the CCM, similar to PMN, we feed the output features
of the MGA into a two-layer multilayer perceptron gCΘ

(·).
The difference, however, is that there is a softmax layer at the
end, where each element of this node’s feature vector can be
understood as a probability of belonging to each class under
this mapping via Ya ∈ R

N×C = gCΘ
(Ha) with C classes, and

Ya
i,c can be considered as the probability that the ith node

belongs to the class c. Therefore, ya
i is the ith row of Ya and

can be regarded as the soft label of xa
i and additional feature

representation, which is integrated into the node contrastive
representation learning to enable the model to better distinguish
different nodes and improve the accuracy of node clustering.

Likewise, we treat the {ya
i ,y

b
i} of the two data-augmented

graph views as a positive pair, while the remaining 2C − 2 pairs
are negative. The cosine similarity is then also used to measure
the similarity between these pairs

cos(yn
i ,y

m
j) =

(yn
i)

�(ym
j)

‖yn
i ‖‖ym

j ‖ (13)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Fuzhou University. Downloaded on June 07,2024 at 00:48:33 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DEEP MASKED GRAPH NODE CLUSTERING 7

Algorithm 2 Deep Masked Graph Node Contrastive Clustering

Input: Graph G = (V, E ,X); number of clusters k; number of
iterations T .

Output: Clustering results O.
1: Generate two augmented graphs G̃a = T a(G) and G̃b =

T b(G).
2: for iterator = 1 −→ T do
3: Obtain the encoder representation by Ha = f(G̃a) and

Hb = f(G̃b);
4: Generate the node representation via Za = gSΘ

(Ha) and
Zb = gSΘ

(Hb);
5: Calculate the class representation via Ya = gCΘ

(Ha)
and Yb = gCΘ

(Hb).
6: Compute the node-level contrastive loss via Eq. (12);
7: Calculate the class-level contrastive loss via Eq. (16);
8: Compute the overall loss function via Eq. (17);
9: Conduct the back-propagation to update parameters;

10: end for
11: return The clustering results O on distribution Za and Zb.

where n,m ∈ {a, b}, i, j ∈ [1, C]. For the node feature xi,
the loss between classes can be calculated by the following
formula:

jai =−log
exp(cos(ya

i , yb
i)/τ2)∑C

j=1[exp(cos (ya
i , ya

j)/τ2) + exp(cos(yb
i , yb

j)/τ2)]

(14)

where τ2 > 0 is a temperature parameter. Furthermore, to avoid
assigning a large number of nodes all to the same cluster when
calculating the contrastive loss for all classes, we calculate
an entropy term that spreads the predictions evenly across the
clusters as follows:

H(Y) =
∑C

i=1[p(y
a
i)log(p(ya

i)) + p(yb
i)log(p(yb

i))] (15)

where p(yb
i) = 1/N

∑N
k=1 Y

m
ki is cluster assignment probabil-

ity, and k ∈ {a, b}. Finally, we can calculate all class-level
contrastive loss, i.e.,

Lclass =
1

2C

∑C
i=1(j

a
i + jbi) + λH(Y) (16)

where λ is a balance coefficient.
4) Joint Contrastive Clustering Optimization: With the

MGA as the core, the NCM and the CCM are jointly optimized
and trained in an end-to-end model, and the overall objective
function of the framework can be defined as

L= Lnode + βLclass (17)

where β is a balance coefficient to control the tradeoff between
the two terms. Eventually, nodes are mapped into a clustering
space utilizing node representations learned from MGA and
contrastive loss, and clustered employing a clustering layer.
And the training procedures of the DMGNCC are summarized
in Algorithm 2.

TABLE II
STATISTICS OF TESTED DATASETS

Dataset # Nodes # Features # Edges # Classes

ACM 3025 1870 13 128 3
Citeseer 3327 3703 4732 6

Cora 2708 1433 5429 7
Pubmed 19 717 500 44 338 3

UAI 3067 4973 28 311 19
Wiki 2405 4973 17 981 17

C. Complexity Analysis

In this work, we define the maximum dimension of the input
data as d, the total number of nodes as N , the number of clusters
as k, and the total number of edges as |E|. For the DMGNC
method, the computational complexity of the masking operation
is O(N), while the complexity of the masked autoencoder mod-
ule is determined to be O(Nd2 + |E|d). The clustering layer
exhibits a time complexity of O(Nk +N logN). Consequently,
the aggregate computational complexity for DMGNC approx-
imately amounts to O(Nd2 + |E|d+Nk +N logN). Regard-
ing the DMGNCC method, the complexity involved in gener-
ating augmented views is contingent on the specific operation
utilized; however, for straightforward operations such as edge
removal and feature masking, it typically remains at O(N).
The computational efforts for node-level and class-level mod-
ules reach a worst-case complexity of O(N 2) and O(k2), re-
spectively. Since k �N , the overall computational complexity
for DMGNCC is approximately O(N 2 +Nd2 + |E|d).

IV. EXPERIMENTS

In this section, we conduct substantial experiments to demon-
strate the effectiveness of the proposed method.

A. Experimental Setup

1) Datasets: The proposed approach is evaluated on the six
real-world graph datasets, as shown in Table II, and the detailed
descriptions are as follows.

1) ACM1 is a benchmark dataset commonly applied for eval-
uating the performance of graph clustering algorithms.
It contains bibliographic records of articles published in
the Association for Computing Machinery digital library,
with each article represented as a node and the edges
representing cocitation relationships between articles.

2) Citeseer2 is a citation network dataset frequently used in
machine learning research. It consists of scientific pub-
lications described by 3703-dimensional bag-of-words
feature vectors from the field of computer science. Each
article is represented by a bag-of-words feature vector,
with the edges between articles representing citations.

3) Cora3 is a usually utilized literature citation network
dataset that consists of 2708 articles divided into seven

1http://dl.acm.org/
2http://citeseerx.ist.psu.edu/index
3https://relational.fit.cvut.cz/dataset/CORA

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Fuzhou University. Downloaded on June 07,2024 at 00:48:33 UTC from IEEE Xplore. Restrictions apply.

http://dl.acm.org/
http://citeseerx.ist.psu.edu/index
https://relational.fit.cvut.cz/dataset/CORA

8 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

categories, each represented by a vector of 1433 lexical
features. The edges of this dataset indicate citation rela-
tionships between articles, i.e., if an article cites another
article, there is an edge between these two articles.

4) Pubmed4 is a widely used citation relationship graph
dataset, where nodes indicate scientific publications and
edges indicate citation relationships. The dataset covers
a subset of all research articles in the PubMed database
that are biomedically relevant, including 19 717 articles,
each tagged with one of three possible tags.

5) UAI5 has been used in several studies as a benchmark
for evaluating the performance of GCN-based methods
for node classification and other tasks. Nodes represent-
ing pages are from multiple universities, with each edge
representing citations.

6) Wiki6 is a graph-based dataset ordinarily employed for
evaluating graph embedding methods. It is derived from
the English Wikipedia and consists of a directed graph
with articles as nodes and hyperlinks between them as
edges. The nodes are labeled with article titles, and the
edges represent hyperlinks between articles.

2) Baselines: We compared our method with several state-
of-the-art graph node clustering baselines to validate its effec-
tiveness: GAE [42], MGAE [37], ARVGA [32], DAEGC [33],
SDCN [45], DFCN [34], AGCN [60], EGAE [61], and DCRN
[62]. The following is a brief introduction to these baselines.

1) GAE proposes a graph autoencoder using GCN as an en-
coder to learn a node embedding and uses reconstruction
and regularization loss to optimize the model.

2) MGAE utilizes a marginalized graph autoencoder to cor-
rupt the network node content and enable the node con-
tent to interact with the network features.

3) ARVGA presents an adversarial graph embedding model
for graph data, and an adversarially regularized GAE to
learn feature representation.

4) DAEGC learns a node representation by capturing the im-
portance between neighboring nodes through an attention
network in a unified framework.

5) SDCN introduces a structural deep clustering network
that effectively combined the strengths of both autoen-
coder and GCN to alleviate the over-smoothing problem.

6) DFCN exploits a fusion module of structural and attribute
information based on interdependence learning to learn a
consensus node representation.

7) AGCN proposes an attention-driven graph clustering net-
work considering dynamic fusion strategies and multi-
scale feature fusion to aggregate the multiscale features
embedded.

8) EGAE designs a specific GAE-based graph clustering
model and learns the relaxed k-means and GAE to induce
the neural network to produce deep features.

9) DCRN utilizes a double information correlation reduction
mechanism and also avoids the generation of negative
samples to filter the redundant information in both views.

4https://pubmed.ncbi.nlm.nih.gov/download/
5https://github.com/zhumeiqiBUPT/AM-GCN
6https://github.com/thunlp/TADW

3) Parameter Setting: All parameter settings of baselines
are directly utilized by the source codes provided by the authors.
For our models, we use a learning rate of 0.001 with Adam op-
timizer and performed 300 iterations. For different datasets, we
set each parameter as a uniform fixed value, i.e., α= 100 and
γ = 2 for DMGNC, node-level temperature parameters τ1 = 0.5
and τ2 = 1 for DMGNCC, respectively. In addition, parameter
sensitivity analysis is conducted with respect to different values
of mask ratio, fusion coefficient ε, scaling factor γ, and balance
coefficient β for each dataset.

4) Evaluation Metric: Several evaluation metrics in the ex-
periments to evaluate the performance of the proposed methods
are introduced. We compare DMGNC and DMGNCC with
several state-of-the-art graph node clustering methods. All ex-
periments of the proposed frameworks and compared methods
are run five times with means recorded as the final results with
NVIDIA Tesla P100 GPU and Intel Core i5-11500 CPU.

Five well-known metrics, including accuracy (ACC), nor-
malized mutual information (NMI), average rand index (ARI),
macro F1-score (F1), and Purity, are employed to evaluate
the clustering performance of all methods. Particularly, ACC
is primarily employed to compare the accuracy of predicted
labels against the ground truths. NMI uses mutual information
to measure the similarity between two clustering results. ARI
enables measuring the consistency of the clustering results with
the true labels. F1 is a combination of precision rate (the ratio
of the number of correct samples of clustering results to the
total number of clustering results) and recall rate (the ratio
between the number of correct samples of clustering results
and the number of correct true samples), which measures the
accuracy and confidence of the clustering. Purity is the pro-
portion of the number of data points belonging to the most
prevalent true category in each cluster to the total number of
data points. For each metric, a larger value indicates a better
clustering result.

B. Experimental Results

In this section, comprehensive experiments are described to
evaluate different graph node clustering methods. In compar-
ison with nine methods, the experimental results validate the
superiority of the two proposed methods on six real-world graph
node datasets.

1) Clustering Results: The results of node clustering are
reported in Table III. From the results, we derive some ben-
eficial observations. Compared to the baseline, our two pro-
posed methods, DMGNC and DMGNCC, generally achieve
the best performance on most of the datasets, including the
smaller dataset Cora and the larger dataset Pubmed. These
experimental results validate that the application of the masking
strategy in graph node clustering is effective. On the one hand,
DMGNC, as a generative graph node clustering method that
focuses on intradata information in the graph, is advantageous
to utilize RRs for clustering tasks. It is capable of providing a
stronger generalization to invisible nodes. On the other hand,
DMGNCC, as a contrastive graph node clustering method, can
further focus on interdata information and apply contrastive
ideas in MGA to pull in positive samples and push away

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Fuzhou University. Downloaded on June 07,2024 at 00:48:33 UTC from IEEE Xplore. Restrictions apply.

https://pubmed.ncbi.nlm.nih.gov/download/
https://github.com/zhumeiqiBUPT/AM-GCN
https://github.com/thunlp/TADW

YANG et al.: DEEP MASKED GRAPH NODE CLUSTERING 9

TABLE III
CLUSTERING PERFORMANCE (ACC %, NMI %, ARI %, F1 %, AND PURITY %) ON SIX DATASETS

Dataset/Methods GAE MGAE ARVGA DAEGC SDCN DFCN AGCN EGAE DCRN DMGNC DMGNCC

ACM

ACC 84.74 87.64 78.53 88.89 89.47 90.68 90.41 88.23 90.62 90.94 91.04
NMI 57.51 62.49 43.52 65.79 66.42 69.10 67.75 62.49 69.34 69.16 68.61
ARI 63.95 67.14 46.90 71.55 71.61 74.55 73.74 68.37 75.02 75.03 75.11
F1 75.03 78.17 78.44 81.10 81.17 83.26 82.70 78.94 83.11 83.40 83.41

Purity 88.19 87.55 82.87 93.02 92.24 92.99 93.08 91.90 91.85 93.29 93.35

Citeseer

ACC 60.31 65.40 58.31 65.41 65.66 69.02 68.48 67.16 70.65 71.27 70.31
NMI 33.90 40.50 30.83 42.33 37.91 42.13 41.14 38.71 44.75 44.40 43.90
ARI 33.24 40.84 30.08 43.17 37.93 44.00 43.46 40.56 46.22 46.55 46.36
F1 44.67 51.24 55.24 55.33 49.34 52.63 52.67 51.05 55.54 56.70 56.36

Purity 66.62 67.15 64.41 73.08 67.65 71.39 70.61 73.43 72.08 73.71 73.10

Cora

ACC 57.42 63.54 64.54 71.73 53.91 67.36 64.36 72.45 68.13 73.12 72.76
NMI 42.06 45.63 46.51 54.84 35.23 52.60 46.07 52.88 53.97 54.80 54.73
ARI 34.29 38.12 39.15 49.16 27.58 44.78 38.53 50.33 46.15 51.29 50.97
F1 45.13 48.08 53.09 57.57 42.23 57.69 53.81 58.14 58.01 58.45 59.30

Purity 66.39 68.85 68.50 76.12 56.45 71.66 66.77 76.11 74.85 75.22 76.87

Pubmed

ACC 60.53 42.75 58.91 66.25 63.08 68.33 64.71 69.41 69.78 70.46 70.62
NMI 23.29 7.84 20.33 26.33 22.27 28.89 26.21 30.04 32.02 34.21 34.65
ARI 22.15 3.32 20.52 26.48 21.44 29.27 24.16 31.25 31.35 33.57 33.72
F1 47.90 42.08 51.20 53.57 49.11 56.92 52.78 55.73 57.45 58.44 57.82

Purity 80.12 85.48 79.19 88.53 83.93 88.10 84.10 82.64 87.15 89.11 88.94

UAI

ACC 30.10 41.47 20.72 38.15 26.07 37.89 40.81 42.04 39.65 43.35 44.28
NMI 25.86 40.23 18.38 38.62 20.83 37.52 35.91 41.43 40.84 40.90 41.98
ARI 8.51 22.97 5.41 22.74 7.64 17.23 18.80 23.43 20.97 23.51 23.98
F1 17.02 29.31 16.56 29.12 19.01 29.21 32.79 28.68 34.57 30.27 32.32

Purity 35.02 38.11 27.46 47.95 28.13 48.80 43.01 52.60 47.21 49.12 47.47

Wiki

ACC 31.10 50.28 27.44 38.14 41.63 47.98 39.22 50.35 48.42 51.43 52.72
NMI 26.22 48.32 20.31 31.41 41.53 45.69 39.12 46.13 45.88 48.76 47.11
ARI 15.54 34.72 7.85 17.91 16.48 16.15 15.15 32.05 27.29 33.34 33.62
F1 25.66 40.15 20.23 24.54 26.87 27.41 36.83 37.24 37.40 35.21 35.52

Purity 36.38 56.15 34.69 46.91 50.36 56.92 48.02 60.96 57.89 58.25 58.01

Note: Best and runner-up results are highlighted in bold red and blue, respectively.

negative ones to improve feature discrimination. DMGNC and
DMGNCC have their advantages in performance on different
datasets and achieve better performance than other state-of-the-
art graph node clustering methods on most of the datasets. It is
worth mentioning that some of the metrics of the two proposed
methods on multiclass datasets (Wiki and UAI) may lag slightly
behind the other methods. We consider that it may be that the
data are possibly harder to discriminate in data with multiple
classes after the masked operation performed by the MGA.
This part will be further investigated in our subsequent work.
It can also be seen that the performance of DAEGC and AGCN
based on the attention mechanism performs well on most of the
datasets, which shows that the graph attention network may be
more expressive in node clustering Therefore, GAT is employed
as the backbone network for both the MGA and the decoder in
our models.

It is worth noting that the differing performances can largely
be attributed to the inherent characteristics of each dataset,
such as size, complexity, feature space, and noise levels,
which may inherently favor either a generative method such
as DMGNC or a contrastive version such as DMGNCC.
DMGNCC employs contrastive learning to enhance feature

representations by distinguishing between positive and negative
node pairs, a strategy whose effectiveness is contingent on
the dataset’s quality and distribution. While contrastive learn-
ing may significantly improve clustering by capturing nuanced
differences between nodes in some datasets, its advantages
might not be as pronounced in others, particularly where the
graph structure is less informative or more noise pervasive.
These methodological differences and design choices between
DMGNC and DMGNCC, including DMGNC’s focus on feature
reconstruction and DMGNCC’s emphasis on node relationship
contrast, are pivotal in understanding their dataset-dependent
performance. Moving forward, we suggest exploring hybrid
models that amalgamate the strengths of both methods and
adjusting the DMGNCC framework to better accommodate less
conducive datasets.

2) Stability Experiment: Fig. 4 records the loss values of
DMGNC and DMGNCC for different iteration epochs on dif-
ferent datasets. It can be observed that as the number of itera-
tions increases, the loss values for the six datasets gradually
decrease and gradually converge. Eventually, it converges to
a stable value with a slight fluctuation when the number of
epochs is large enough, which indicates convergence. It can be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Fuzhou University. Downloaded on June 07,2024 at 00:48:33 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Fig. 4. Convergent curves of the proposed frameworks DMGNC and DMGNCC on the six datasets. (a) ACM. (b) Citeseer. (c) Cora. (d) Pubmed. (e) UAI.
(f) Wiki.

discerned that both of our proposed methods are capable of sta-
ble training at a certain number of iterations and that performing
masked feature reconstruction facilitates robust training of the
node representation.

To demonstrate that our method can effectively integrate
information under the prevalent noise in the real-world sce-
nario and the performance of our method in the presence of
contaminated node features, we sampled random noise from
a Gaussian distribution N (1, σ2) and added it to the input
data, where σ2 varied between 0.1 and 0.9, and evaluating the
performance of various advanced deep graph node clustering
methods. The experimental results are shown in Fig. 6. By
adding noise at different degrees, compared to other advanced
deep graph node clustering methods, our method has better
noise resistance and is more robust.

3) Visualization Results: To intuitively show the cluster-
ing performance, Fig. 5 employs the t-SNE to present scatter
diagrams of different methods on Cora. It can be observed
from the figure that both of our proposed methods, DMGNC
and DMGNCC, are able to better cluster the seven classes
in the Cora data together, visually demonstrating that having
better clustering.

C. Parameter Study

In this section, to investigate the performance variation and
the effectiveness of the parameter settings for the two proposed
methods, DMGNC and DMGNCC, under different settings, the
following parameter sensitivity analysis is performed.

The parameter sensitivity analysis for DMGNC is shown in
Fig. 7 and for DMGNCC in Fig. 8. Both Figs. 7(a) and 8(a)
clearly show the variation curves of the performance of the
six datasets with different mask ratios. It can be seen from

the figure that when the mask ratio is low, the node feature
reconstruction does not provide more assistance for learning
effective embedding features, and the accuracy does not meet
expectations. When the mask ratio is large, it is difficult to
provide more effective information for subsequent tasks due
to the loss of too much node information. Therefore, we set
the mask ratio between 0.4 and 0.6 for different datasets in
our experiments.

Fig. 7(b) shows the performance variation curves of the six
datasets with different fusion coefficients ε. It can be shown
that the RRs can provide varying degrees of effectiveness for
clustering tasks. But the closer the fusion coefficient ε is to 1,
the larger the weight of Z2 in the final representation used for
clustering, resulting in excessive information loss and degraded
clustering performance. Therefore, their weights should be con-
trolled to a reasonable degree.

Fig. 7(c) records the performance variation curves for dif-
ferent scaling factors γ for the six datasets. We observe that
the accuracy of the clustering can be improved to some ex-
tent when γ is taken as either 2 or 3, providing further
demonstration that the usage of scaled cosine error can further
improve performance.

Fig. 8(b) illustrates the variation curves of performance for
different balance coefficients β on the six datasets. As can
be viewed from the figure, the loss of both contrastive learn-
ing modules provides varying degrees of contribution to the
clustering task. However, the performance degrades when each
component is over-represented, indicating that it is difficult to
take better advantage of the MGA with node-level loss or class-
level loss alone. Therefore, their weights should also be kept
within a sensible degree.

Fig. 8(c) shows the cross-entropy balance coefficient in the
class-level loss. As seen from the figure, the inclusion of cross

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Fuzhou University. Downloaded on June 07,2024 at 00:48:33 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DEEP MASKED GRAPH NODE CLUSTERING 11

Fig. 5. Clustering accuracy for (a) ACM; (b) Citeseer; and (c) Cora datasets with different noise ratios.

Fig. 6. t-SNE visualizations of different methods on Cora, where each color corresponds to one class. (a) Raw Data. (b) GAE. (c) MGAE. (d) ARVGA.
(e) SDCN. (f) AGCN. (g) DFCN. (h) DCRN. (i) DMGNC. (j) DMGNCC.

Fig. 7. Clustering accuracy of DMGNC with different (a) mask ratios; (b) fusion coefficient ε; and (c) scaling factor γ.

Fig. 8. Clustering accuracy of DMGNCC with different (a) mask ratios; (b) fusion coefficient β; and (c) balance coefficient λ.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Fuzhou University. Downloaded on June 07,2024 at 00:48:33 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Fig. 9. Clustering performance (a) ACC. (b) NMI. (c) ARI of six datasets with different number of GNN hidden layers.

TABLE IV
ABLATION STUDY OF OUR PROPOSED MODULES DMGNC AND DMGNCC

DMGNC DMGNCC

Dataset/Module
MGA � � � � PMN � � �

CL × � × � NCM � × �
RR × × � � CCM × � �

ACM

ACC 86.50 89.59 89.88 90.94 ACC 85.62 80.21 91.04
NMI 63.48 65.51 66.83 69.16 NMI 57.52 48.24 68.61
ARI 70.21 71.62 72.35 75.03 ARI 62.71 51.24 75.11
F1 79.21 81.13 81.62 83.40 F1 75.20 67.51 83.41

Citeseer

ACC 68.65 68.94 70.78 71.27 ACC 67.12 46.98 70.31
NMI 43.28 43.92 44.14 44.40 NMI 40.57 23.44 43.90
ARI 43.54 44.01 45.59 46.55 ARI 41.74 19.06 46.36
F1 53.80 54.31 55.93 56.70 F1 41.70 33.09 56.36

Cora

ACC 67.49 69.28 70.02 73.12 ACC 69.72 53.36 72.76
NMI 53.92 54.21 54.41 54.80 NMI 51.21 35.97 54.73
ARI 44.66 44.78 45.06 51.29 ARI 46.60 25.37 50.97
F1 52.49 54.70 54.92 58.45 F1 55.34 39.20 59.30

Note: Bold indicates best results.

entropy in each dataset is capable of improving the cluster-
ing performance to some extent, indicating that this term can
effectively prevent the network from assigning all results to
one class. In our experiments, we uniformly set λ to 1 for
each dataset.

Furthermore, to verify that our method can effectively avoid
the over-smoothing phenomenon, we performed a sensitivity
analysis of the GNN hidden layers for all datasets and ex-
plored the clustering performance with the number of GNN
layers varying from 1 to 10. As can be seen in Fig. 9, our
method is able to show stable performance at different num-
bers of GNN layers, effectively avoiding the phenomenon of
over-smoothing.

D. Ablation Study

In this section, we describe ablation experiments on the
proposed methods, DMGNC and DMGNCC, to verify their
efficiency and effectiveness.

For DMGNC, we stack the MGA, CL, and RR to conduct
ablation experiments on ACM, Citeseer, and Cora gradually.
In detail, we utilize the mask graph autoencoder to verify the

validity. Then, the CL and RR are added to the model separately.
Finally, the three components are combined into the whole
framework, which is our overall complete framework DMGNC
to perform the clustering task. It enables a clear measurement of
the impact of each component. From Table IV, we observe that
when stacking the modules one by one, every metric employed
to evaluate the clustering performance increases, indicating that
each module of DMGNC contributes to the performance im-
provement of the clustering task.

For DMGNCC, we applied the MGA to build the PMN and
then stacked NCM and CCM, respectively, for progressive abla-
tion experiments on ACM, Citeseer, and Cora. Specifically, the
node-level contrast and the class-level contrast were performed
in PMN, respectively, as well as the full network framework
for the final execution. From Table IV, we similarly observe
that each metric used to assess clustering performance increases
when stacking modules one by one. This demonstrates that
the two contrastive modules of DMGNCC can gather more
information from within nodes and classes, which validates that
each module of DMGNCC is able to improve the performance
of the clustering task.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Fuzhou University. Downloaded on June 07,2024 at 00:48:33 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: DEEP MASKED GRAPH NODE CLUSTERING 13

Therefore, this ablation study validates the effectiveness of
each module in DMGNC and DMGNCC.

V. CONCLUSION

In this article, we proposed a clustering method called
DMGNC and an extended version named DMGNCC for deep
graph node clustering using an MGA. DMGNC jointly per-
formed feature reconstruction learning graph embedding and
graph clustering in a unified framework and used the masked
latent representation for the clustering task to further exploit the
valid information of the masked feature reconstruction through
the masking strategy. DMGNCC utilized positive and negative
node pairs in a network of MGA for node-level and class-
level contrastive learning. Both methods of masked feature
reconstruction are capable of robust training that favors node
representation. Extensive experiments on deep graph node clus-
tering baselines demonstrate the effectiveness of our proposed
methods. This article focuses on methodological aspects and
the general applicability to benchmark datasets. In the future,
we will dedicate ourselves to further exploring more effective
and efficient methods, and to investigating specific domain
applications such as bioinformatics, chemical molecules, or
recommendation systems.

REFERENCES

[1] W. Hu et al., “Open graph benchmark: Datasets for machine learning
on graphs,” in Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 1–16.

[2] F. Nie, L. Tian, and X. Li, “Multiview clustering via adaptively weighted
procrustes,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2018, pp. 2022–2030.

[3] K. Liu, F. Xue, X. He, D. Guo, and R. Hong, “Joint multi-grained
popularity-aware graph convolution collaborative filtering for recom-
mendation,” IEEE Trans. Comput. Social Syst., vol. 10, no. 1, pp. 72–83,
Feb. 2023.

[4] Y. Xie, S. Tong, P. Zhou, Y. Li, and D. Feng, “Efficient storage
management for social network events based on clustering and hot/cold
data classification,” IEEE Trans. Comput. Social Syst., vol. 10, no. 1,
pp. 120–130, Feb. 2023.

[5] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” J. Roy. Statist. Soc. C, vol. 28, no. 1, pp. 100–108,
1979.

[6] L. Zhang, L. Fu, T. Wang, C. Chen, and C. Zhang, “Mutual information-
driven multi-view clustering,” in Proc. 32nd ACM Int. Conf. Inf. Knowl.
Manage., 2023, pp. 3268–3277.

[7] J. Cai, S. Wang, C. Xu, and W. Guo, “Unsupervised deep clustering
via contractive feature representation and focal loss,” Pattern Recognit.,
vol. 123, 2022, Art. no. 108386.

[8] J. Cai, S. Wang, and W. Guo, “Unsupervised embedded feature learning
for deep clustering with stacked sparse auto-encoder,” Expert Syst. Appl.,
vol. 186, 2021, Art. no. 115729.

[9] J. Cai, Y. Zhang, S. Wang, J. Fan, and W. Guo, “Wasserstein embedding
learning for deep clustering: A generative approach,” IEEE Trans.
Multimedia, 2024.

[10] M. Ester et al., “A density-based algorithm for discovering clusters
in large spatial databases with noise,” in Proc. 2nd Int. Conf. Knowl.
Discovery Data Mining, 1996, pp. 226–231.

[11] L. Fu, Z. Chen, Y. Chen, and S. Wang, “Unified low-rank tensor
learning and spectral embedding for multi-view subspace clustering,”
IEEE Trans. Multimedia, vol. 26, pp. 7567–7580, 2024.

[12] J. Cai, J. Fan, W. Guo, S. Wang, Y. Zhang, and Z. Zhang, “Efficient
deep embedded subspace clustering,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2022, pp. 21–30.

[13] H.-J. Li, Y. Feng, C. Xia, and J. Cao, “Overlapping graph clustering in
attributed networks via generalized cluster potential game,” ACM Trans.
Knowl. Discovery Data, vol. 18, no. 1, pp. 1–26, 2023.

[14] H. Li, W. Xu, C. Qiu, and J. Pei, “Fast Markov clustering algorithm
based on belief dynamics,” IEEE Trans. Cybern., vol. 53, no. 6,
pp. 3716–3725, Jun. 2023.

[15] H. Li, H. Cao, Y. Feng, X. Li, and J. Pei, “Optimization of graph
clustering inspired by dynamic belief systems,” IEEE Trans. Knowl.
Data Eng., early access, Nov. 29, 2023.

[16] S. Wang, L. Fu, Z. Wang, H. Xu, and W. Zhu, “Multigraph random
walk for joint learning of multiview clustering and semisupervised
classification,” IEEE Trans. Comput. Social Syst., vol. 9, no. 3, pp. 926–
939, Jun. 2022.

[17] S. Huang, Y. Zhang, L. Fu, and S. Wang, “Learnable multi-view matrix
factorization with graph embedding and flexible loss,” IEEE Trans.
Multimedia, vol. 25, pp. 3259–3272, 2023.

[18] Y. Liu et al., “Simple contrastive graph clustering,” IEEE Trans. Neural
Netw. Learn. Syst., early access, Jun. 27, 2023.

[19] Y. Liu et al., “Dink-Net: Neural clustering on large graphs,” in Proc.
Int. Conf. Mach. Learn., PMLR, 2023, pp. 21794–21812.

[20] Y. Liu et al., “Reinforcement graph clustering with unknown clus-
ter number,” in Proc. 31st ACM Int. Conf. Multimedia, 2023,
pp. 3528–3537.

[21] J. Cai, Y. Han, W. Guo, and J. Fan, “Deep graph-level clustering using
pseudo-label-guided mutual information maximization network,” Neural
Comput. Appl., vol. 36, no. 16, pp. 9551–9566, 2024.

[22] J. Cai, W. Guo, and J. Fan, “Unsupervised deep discriminant analysis
based clustering,” 2022, arXiv:2206.04686.

[23] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Hetero-
geneous graph neural network,” in Proc. 25th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2019, pp. 793–803.

[24] Q. Zhu, C. Yang, Y. Xu, H. Wang, C. Zhang, and J. Han, “Transfer learn-
ing of graph neural networks with ego-graph information maximization,”
in Proc. Adv. Neural Inf. Process. Syst., 2021, pp. 1766–1779.

[25] Z. Wu, Z. Zhang, and J. Fan, “Graph convolutional kernel machine
versus graph convolutional networks,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 36, pp. 1–23, 2024.

[26] Z. Wu, Z. Chen, S. Du, S. Huang, and S. Wang, “Graph convolutional
network with elastic topology,” Pattern Recognit., vol. 151, 2024,
Art. no. 110364.

[27] Z. Wu, X. Lin, Z. Lin, Z. Chen, Y. Bai, and S. Wang, “Interpretable
graph convolutional network for multi-view semi-supervised learning,”
IEEE Trans. Multimedia, vol. 25, pp. 8593–8606, 2023.

[28] F. Tian, B. Gao, Q. Cui, E. Chen, and T. Liu, “Learning deep repre-
sentations for graph clustering,” in Proc. 28th AAAI Conf. Artif. Intell.,
2014, pp. 1293–1299.

[29] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding
for clustering analysis,” in Proc. 33rd Int. Conf. Mach. Learn., 2016,
pp. 478–487.

[30] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and
relieving the over-smoothing problem for graph neural networks from
the topological view,” in Proc. 34th AAAI Conf. Artif. Intell., 2020,
pp. 3438–3445.

[31] S. Wang, J. Yang, J. Yao, Y. Bai, and W. Zhu, “An overview of advanced
deep graph node clustering,” IEEE Trans. Comput. Social Syst., vol. 11,
no. 1, pp. 1302–1314, Feb. 2024.

[32] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversarially
regularized graph autoencoder for graph embedding,” in Proc. 27th Int.
Joint Conf. Artif. Intell., 2018, pp. 2609–2615.

[33] C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang, “Attributed
graph clustering: A deep attentional embedding approach,” in Proc. 28th
Int. Joint Conf. Artif. Intell., 2019, pp. 3670–3676.

[34] W. Tu et al., “Deep fusion clustering network,” in Proc. 35th AAAI Conf.
Artif. Intell., 2021, pp. 9978–9987.

[35] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph con-
trastive learning with adaptive augmentation,” in Proc. Web Conf., 2021,
pp. 2069–2080.

[36] H. Zhao, X. Yang, Z. Wang, E. Yang, and C. Deng, “Graph debiased
contrastive learning with joint representation clustering,” in Proc. 30th
Int. Joint Conf. Artif. Intell., 2021, pp. 3434–3440.

[37] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang, “MGAE: Marginalized
graph autoencoder for graph clustering,” in Proc. ACM Conf. Inf. Knowl.
Manage., 2017, pp. 889–898.

[38] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. B. Girshick, “Masked
autoencoders are scalable vision learners,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2022, pp. 15979–15988.

[39] H. Bao, L. Dong, S. Piao, and F. Wei, “BEiT: BERT pre-training of
image transformers,” in Proc. 10th Int. Conf. Learn. Representations,
2022, pp. 1–18.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Fuzhou University. Downloaded on June 07,2024 at 00:48:33 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

[40] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics: Human Lang.
Technol., 2019, pp. 4171–4186.

[41] Z. Hou et al., “GraphMAE: Self-supervised masked graph autoen-
coders,” in Proc. 28th ACM SIGKDD Conf. Knowl. Discovery Data
Mining, 2022, pp. 594–604.

[42] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” 2016,
arXiv:1611.07308.

[43] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. 5th Int. Conf. Learn. Representations,
2017, pp. 1–14.

[44] J. Park, M. Lee, H. J. Chang, K. Lee, and J. Y. Choi, “Symmetric
graph convolutional autoencoder for unsupervised graph representa-
tion learning,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp. 6519–6528.

[45] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, “Structural deep
clustering network,” in Proc. Web Conf., 2020, pp. 1400–1410.

[46] X. He, B. Wang, Y. Hu, J. Gao, Y. Sun, and B. Yin, “Parallelly adaptive
graph convolutional clustering model,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 35, no. 4, pp. 4451–4464, Apr. 2024.

[47] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple
framework for contrastive learning of visual representations,” in Proc.
37th Int. Conf. Mach. Learn., 2020, pp. 1597–1607.

[48] X. Wang, D. Zhang, H. Tan, and D. Lee, “A self-fusion network based
on contrastive learning for group emotion recognition,” IEEE Trans.
Comput. Social Syst., vol. 10, no. 2, pp. 458–469, Apr. 2023.

[49] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph
contrastive learning with augmentations,” in Proc. Adv. Neural Inf.
Process. Syst., 2020, pp. 1–12.

[50] P. Velicković, W. Fedus, W. L. Hamilton, P. Lio, Y. Bengio, and
R. D. Hjelm, “Deep graph infomax,” in Proc. 7th Int. Conf. Learn.
Representations, 2019, pp. 1–17.

[51] R. D. Hjelm et al., “Learning deep representations by mutual infor-
mation estimation and maximization,” in Proc. 7th Int. Conf. Learn.
Representations, 2019, pp. 1–24.

[52] K. Hassani and A. H. K. Ahmadi, “Contrastive multi-view representation
learning on graphs,” in Proc. 37th Int. Conf. Mach. Learn., 2020,
pp. 4116–4126.

[53] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Deep graph
contrastive representation learning,” 2020, arXiv:2006.04131.

[54] W. Xia, Q. Gao, M. Yang, and X. Gao, “Self-supervised contrastive
attributed graph clustering,” 2021, arXiv:2110.08264.

[55] Y. Liu, Y. Zheng, D. Zhang, H. Chen, H. Peng, and S. Pan, “Towards
unsupervised deep graph structure learning,” in Proc. ACM Web Conf.,
2022, pp. 1392–1403.

[56] F. Devvrit, A. Sinha, I. Dhillon, and P. Jain, “S3GC: Scalable self-
supervised graph clustering,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 35, 2022, pp. 3248–3261.

[57] P. Velicković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in Proc. 6th Int. Conf. Learn.
Representations, 2017, pp. 1–12.

[58] Y. Li, P. Hu, Z. Liu, D. Peng, J. T. Zhou, and X. Peng, “Contrastive
clustering,” in Proc. 35th AAAI Conf. Artif. Intell., 2021, pp. 8547–8555.

[59] Y. Li, M. Yang, D. Peng, T. Li, J. Huang, and X. Peng, “Twin contrastive
learning for online clustering,” Int. J. Comput. Vis., vol. 130, no. 9,
pp. 2205–2221, 2022.

[60] Z. Peng, H. Liu, Y. Jia, and J. Hou, “Attention-driven graph clustering
network,” in Proc. 29th ACM Int. Conf. Multimedia, 2021, pp. 935–943.

[61] H. Zhang, P. Li, R. Zhang, and X. Li, “Embedding graph auto-encoder
for graph clustering,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34,
no. 11, pp. 9352–9362, Nov. 2023.

[62] Y. Liu et al., “Deep graph clustering via dual correlation reduction,” in
Proc. 36th AAAI Conf. Artif. Intell., 2022, pp. 7603–7611.

Jinbin Yang received the B.S. degree from the
College of Mathematics and Computer Science,
Fuzhou University, Fuzhou, China, in 2021, where
he is currently working toward the M.S. degree with
the College of Computer and Data Science, Fuzhou
University, Fuzhou, China.

His research interests include deep clustering,
deep learning, and graph neural networks.

Jinyu Cai received the Ph.D. degree in computer
science and technology from the College of Com-
puter and Data Science, Fuzhou University, Fuzhou,
China, in 2023.

He is currently a Postdoc Research Fellow with
the Institute of Data Science, National University of
Singapore, Singapore. His research interests include
machine learning, computer vision, and pattern
recognition.

Luying Zhong received the B.S. degree from the
College of Mathematics and Computer Science,
Fuzhou University, Fuzhou, China, in 2021, where
she is currently working toward the Ph.D. degree
with the College of Computer and Data Science,
Fuzhou University.

Her research interests include edge computing,
federated learning, graph learning, and graph neural
networks.

Yueyang Pi received the B.S. degree from the
College of Computer Science, Hunan University
of Technology, in 2021. He is currently work-
ing toward the Ph.D. degree with the College of
Computer and Data Science, Fuzhou University,
Fuzhou, China.

His research interests include machine learning,
active learning, and optimization.

Shiping Wang (Senior Member, IEEE) received
the Ph.D. degree from the University of Electronic
Science and Technology of China, Chengdu, China,
in 2014.

He is currently a Professor with the College of
Computer and Data Science, Fuzhou University,
Fuzhou, China, and the Director of the Key Labora-
tory of Intelligent Metro, Fujian Provincial Univer-
sity, Fuzhou, China. He was a Visiting Scholar with
the University of Alberta, Edmonton, AB, Canada,
from 2013 to 2014. He worked as a Research Assis-

tant with the National University of Singapore, Singapore, from 2014 to 2014,
and a Research Fellow with Nanyang Technological University, Singapore,
from 2015 to 2016. He was also a Visiting Researcher with Peking University,
Beijing, China, from 2019 to 2020. His research interests include machine
learning, deep learning, feature representation, and multimodal fusion.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Fuzhou University. Downloaded on June 07,2024 at 00:48:33 UTC from IEEE Xplore. Restrictions apply.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

