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ABSTRACT

Many well-known and effective anomaly detection methods assume that a rea-
sonable decision boundary has a hypersphere shape, which however is difficult to
obtain in practice and is not sufficiently compact, especially when the data are in
high-dimensional spaces. In this paper, we first propose a novel deep anomaly de-
tection model that improves the original hypersphere learning through an orthog-
onal projection layer, which ensures that the training data distribution is consistent
with the hypersphere hypothesis, thereby increasing the true positive rate and de-
creasing the false negative rate. Moreover, we propose a bi-hypersphere compres-
sion method to obtain a hyperspherical shell that yields a more compact decision
region than a hyperball, which is demonstrated theoretically and numerically. The
proposed methods are not confined to common datasets such as image and tabular
data, but are also extended to a more challenging but promising scenario, graph-
level anomaly detection, which learns graph representation with maximum mutual
information between the substructure and global structure features while exploring
orthogonal single- or bi-hypersphere anomaly decision boundaries. The numeri-
cal and visualization results on benchmark datasets demonstrate the superiority of
our methods in comparison to many baselines and state-of-the-art methods.

1 INTRODUCTION

Anomaly detection plays a crucial role in a variety of applications, including fraud detection in fi-
nance, fault detection in chemical engineering (Fan & Wang, 2014), medical diagnosis, and the iden-
tification of sudden natural disasters (Aggarwal, 2017). Significant research has been conducted on
anomaly detection using both tabular and image data (Ruff et al., 2018; Fan & Chow, 2020; Goyal
et al., 2020; Chen et al., 2022; Liznerski et al., 2021; Sohn et al., 2021; Liznerski et al., 2021). A
common setting is to train a model solely on normal data to distinguish unusual patterns from abnor-
mal ones, which is usually referred to as one-class classification (Schölkopf et al., 1999; Tax & Duin,
2004; Ruff et al., 2018; Pang et al., 2021; Seliya et al., 2021). For example, the support vector data
description (SVDD) proposed by (Tax & Duin, 2004) obtains a spherically shaped boundary around
a dataset, where data points falling outside the hypersphere will be detected as anomalous data. The
deep SVDD proposed by (Ruff et al., 2018) trains a neural network to transform the input data into
a space in which normal data are distributed in a hyperspherical decision region. Regarding the con-
cern that finite training normal data generating distribution may be incomplete or draw from many
sets of categories, Kirchheim et al. (2022) proposed a supervised multi-class hypersphere anomaly
detection method. Han et al. (2022) provided a review and comparison of many anomaly detection
methods. Compared with common anomaly detection, there is relatively little work on graph-level
data, despite the fact that graph anomaly detection has application scenarios in various problems,
such as identifying abnormal communities in social networks, discriminating whether human-brain
networks are healthy (Lanciano et al., 2020), or detecting unusual protein structures in biological
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Figure 1: Architecture of the proposed models (right top: DOHSC; right bottom: DO2HSC). Herein,
2-D visualizations show the trends of training data when applying two optimizations and 3-D visu-
alizations illustrate the detection results obtained by them, respectively.

experiments. The target of graph-level anomaly detection is to explore a regular group pattern and
distinguish the abnormal manifestations of the group. However, graph data are inherently complex
and rich in structural and relational information. This characteristic facilitates the learning of pow-
erful graph-level representations with discriminative patterns in many supervised tasks (e.g., graph
classification) but brings many obstacles to unsupervised learning. Graph kernels (Kriege et al.,
2020) are useful for both supervised and unsupervised graph learning problems. For graph-level
anomaly detection, graph kernels can be combined with one-class SVM (Schölkopf et al., 1999)
or SVDD (Tax & Duin, 2004). This is a two-stage approach that cannot ensure that implicit fea-
tures are sufficiently expressive for learning normal data patterns. Recently, researchers proposed
several end-to-end graph-level anomaly detection methods (Ma et al., 2022; Zhao & Akoglu, 2021;
Qiu et al., 2022). For example, Ma et al. (2022) proposed a global and local knowledge distilla-
tion method for graph-level anomaly detection. Zhao & Akoglu (2021) combined the deep SVDD
objective function and graph isomorphism network to learn a hypersphere of normal samples.

Although the hypersphere assumption is reasonable and practical, and has led to many successful
algorithms (Tax & Duin, 2004; Ruff et al., 2018; 2020; Kirchheim et al., 2022; Zhao & Akoglu,
2021) for anomaly detection, it still exhibits the following three limitations:

• First, minimizing the sum of squares of the difference between each data point and the cen-
ter cannot guarantee that the learned decision boundary is a standard hypersphere. Instead,
one may obtain a hyperellipsoid (see Figure 2) or other shapes that are inconsistent with
the assumption, which will lower the detection accuracy.

• The second is that in high-dimensional space the normal data enclosed by a hypersphere are
all far away from the center (see Figure 3 and Proposition 2) with high probability. It means
that there is no normal data around the center of the hypersphere; hence, the normality in
the region is not supported, whereas anomalous data can still fall into the region. It’s related
to the soap-bubble phenomenon of high-dimensional statistics (Vershynin, 2018).

• Last but not least, in high-dimensional space, one hypersphere is not sufficiently compact.
In other words, the distribution of normal data in the hypersphere is extremely sparse be-
cause of the high dimensionality and limited training data. A high sparsity increases the
risk of detecting anomalous data as normal.

To address these issues, we propose two anomaly detection methods. The first one, Deep Orthogonal
Hypersphere Contraction (DOHSC), utilizes an orthogonal projection layer to render the deci-
sion region more hyperspherical and compact to reduce evaluation errors. The second one, Deep
Orthogonal Bi-Hypersphere Compression (DO2HSC), aims to solve the problem of the soap-bubble
phenomenon and incompactness. From a 2-dimensional view, DO2HSC limits the decision area
(of normal data) to an interval enclosed by two co-centered hyperspheres, and similarly learns
the orthogonality-projected representation. Accordingly, a new detection metric is proposed for
DO2HSC. The framework of the methods mentioned above is shown in Figure 1. In addition,
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graph-level extensions of DOHSC and DO2HSC are conducted to explore a more challenging task,
i.e., graph-level anomaly detection. In summary, our contributions are three-fold.

• First, we present a hypersphere contraction algorithm for anomaly detection tasks with an
orthogonal projection layer to promote training data distribution close to the standard hy-
persphere, thus avoiding inconsistencies between assessment criteria and actual conditions.

• Second, we propose the deep orthogonal bi-hypersphere compression model to construct
a decision region enclosed by two co-centered hyperspheres, which has theoretical sup-
ports and solves the problem of soap-bubble phenomenon and incompactness of the single-
hypersphere assumption.

• Finally, we extend our methods to graph-level anomaly detection and conduct abundant
experiments to show the superiority of our methods over the state-of-the-art.

2 DEEP ORTHOGONAL HYPERSPHERE COMPRESSION

2.1 VANILLA MODEL

Denote a data matrix by X ∈ Rn×d with n instances and d features, we first construct an
auto-encoder and utilize the latent representation Z = f enc

W (X) to initialize a decision region’s
center c according to Deep SVDD (Ruff et al., 2018), i.e, c = 1

n

∑n
i=1 f

enc
W (xi), where xi

denotes the transpose of the i-th row of X and f enc
W (·) is an L-layer representation learning

module with parameters W = {Wl,bl}Ll=1. With this center, we expect to optimize the
learned representation of normal data to be distributed as close to it as possible, so that the
unexpected anomalous data falling out of this hypersphere would be detected. The Hyper-
sphere Contraction optimization problem for anomaly detection is first formulated as follows:
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Figure 2: Toy example of decision bound-
aries with and without the orthogonal pro-
jection layer. Blue circle: assumed deci-
sion boundary; black ellipse: actual decision
boundary; purple points: normal data; red
points: abnormal data.

min
W

1

n

n∑
i=1

∥f enc
W (xi)− c∥2 + λ

2

L∑
l=1

∥Wl∥2F , (1)

where the regularization is to reduce over-fitting.

2.2 ORTHOGONAL PROJECTION LAYER

Although the goal of Optimization (1) is to learn a
hypersphere as the decision boundary, we find that
it usually yields a hyperellipsoid or even more irreg-
ular shapes (please refer to Section I in the supple-
mentary material). This phenomenon would lead to
inaccuracies in the testing stage, because the evalu-
ation was based on the hypersphere assumption. Figure 2 illustrates an intuitive example. In the
left plot, the learned decision boundary (black ellipse) does not match the assumption (blue circle),
which decreases the true-positive (TP) rate and increases the false-positive (FP) rate. Thus the de-
tection precision, calculated as TP↓

TP↓+FP↑ , decreases compared to the right plot. The inconsistency
between the assumption and the actual solution stems from the following two points: 1) the learned
features have different variances and 2) the learned features are correlated. Clearly, these two issues
cannot be avoided by solely solving Optimization (1).

To solve these issues, as shown in the right plot of Figure 2, we append an orthogonal projection
layer to the feature layer, i.e., the output of f enc

W . Note that we pursue orthogonal features of latent
representation rather than computing the projection onto the column or row space of Z ∈ Rn×k,
which is equivalent to performing Principal Component Analysis (PCA) (Wold et al., 1987) and us-
ing standardized principal components. Our experiments also justify the necessity of this projection
step and the standardization process, which will be discussed further in Appendix K. Specifically,
the projection layer is formulated as

Z̃ = ProjΘ(Z) = ZW∗, subject to Z̃⊤Z̃ = Ik′ (2)
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where Θ := {W∗ ∈ Rk×k′} is the set of projection parameters, Ik′ denotes an identity matrix,
and k′ is the projected dimension. To achieve (2), one may consider adding a regularization term
α
2 ∥Z̃

⊤Z̃−Ik′∥2F with large enough α to the objective, which is not very effective and will lead to one
more tuning hyperparameter. Instead, we propose to achieve (2) via singular value decomposition:

UΛV⊤ = Z, W := Vk′Λ−1
k′ . (3)

Assume that there are b samples in one batch, Λ = diag(ρ1, ρ2, ..., ρb) and V are the diago-
nal matrix with singular values and right-singular matrix of Z, respectively. It is noteworthy that
Vk′ := [v1, ...,vk′ ] denotes the first k′ right singular vectors, and Λk′ := diag(ρ1, ..., ρk′). In each
forward propagation epoch, the original weight parameter is substituted into a new matrix W∗ in
the subsequent loss computations.

2.3 ANOMALY DETECTION

Attaching with an orthogonal projection layer, the improved initialization of the center is rewritten
in the following form c̃ = 1

n

∑n
i=1 z̃i, which will be fixed until optimization is completed. The final

objective function for anomaly detection tasks in a mini-batch would become

min
Θ,W

1

b

b∑
i=1

∥z̃i − c̃∥2 + λ

2

∑
W∈W

∥W∥2F . (4)

After the training stage, the decision boundary r̂ will be fixed, which is calculated based on the 1−ν
percentile of the training data distance distribution:

r̂ = argmin
r

P(D ≤ r) ≥ ν (5)

where D := {di}Ni=1 follows a sampled distribution P , and di = ∥z̃i − c̃∥. Accordingly, the
anomalous score of i-th instance is defined as follows:

si = d2i − r̂2 (6)

where s = (s1, s2, . . . , sn). It is evident that when the score is positive, the instance is identified as
abnormal, and the opposite is considered normal.

The detailed procedures are summarized in Algorithm 1 (see Appendix A), which is termed as
DOHSC. DOHSC is easy to implement and can ensure that the actual decision boundary is close to
a hypersphere. Our numerical results in Section 4 will show the effectiveness.

3 DEEP ORTHOGONAL BI-HYPERSPHERE COMPRESSION

3.1 MOTIVATION AND THEORETICAL ANALYSIS

As mentioned in the third paragraph of Section 1, the hypersphere assumption may encounter the
soap-bubble phenomenon and incompactness. They can be succinctly summarized as

• High-dimensional data enclosed by a hypersphere are far from the center naturally, which
means the normality within a wide range of distance is not supported.

• In high-dimensional space, the data distribution within a hypersphere is highly sparse,
which leads to an incompact decision region and, hence, a heightened risk of detecting
abnormal data as normal.

In this section, we present a detailed analysis. Let the anomaly score be determined using ∥z − c∥
where c denotes the centroid. The original evaluation of anomaly detection compares the score
with a threshold r̂ determined by a certain quantile (e.g., 0.95). Specifically, if ∥z − c∥ ≥ r̂, z is
abnormal. This target promoted the location of most samples near the origin. However, empirical
exploration has found that most samples are far away from their origin in a high-dimensional space.
Taking Gaussian distributions as an example, the distributions would look like a soap-bubble1, which

1https://www.inference.vc/high-dimensional-gaussian-distributions-are-soap-bubble/
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means the high-dimensional normal data may be more likely to locate in the interval region of bi-
hypersphere instead of a simple hypersphere. Vershynin (2018) stated that the typical set, where
data has information closest to the expected entropy of the population, of a Gaussian is the thin shell
within a distance from the origin, just like the circumstances shown in Figure 3. The higher the
dimensionality of the data, the more sampled instances are from the center. We also supplement
the anomaly detection simulation of high-dimensional Gaussian data in Appendix C to show the
significant meaning of bi-hypersphere learning. This is formally proven by the following proposition
(derived from Lemma 1 of (Laurent & Massart, 2000)):

Proposition 1. Suppose z1, z2, · · · , zn are sampled from N (0, Id) independently. Then, for any zi
and all t ≥ 0, the following inequality holds.

P
[
∥zi∥ ≥

√
d− 2

√
dt

]
≥ 1− e−t.

The proposition shows that when the dimension is high, each zi is outside the hypersphere of radius
r′ :=

√
d− 2

√
dt with a probability of at least 1− e−t. When r′ is closer to r̂ (refer to equation 5),

normal data are more likely to be away from the center (see Figure 3).

Figure 3: Soap-bubble phenomenon showed
by the histogram of distances from the cen-
ter of 104 samples drawn from N (0, Id). In
high-dimensional space, almost all data are
far from the center.

Note that, in anomaly detection, z̃i (e.g., the learned
latent representation) is not necessarily an isotropic
Gaussian. However, we obtain the following result.

Proposition 2. Let zi = z̃i, i = 1, . . . , N and
let f : Rk → Rk be an η-Lipschitz function such
that s = f(z) are isotropic Gaussian N (c̄, Ik). Let
c be a predefined center of {zi}Ni=1 and suppose
∥c̄ − f(c)∥ ≤ ϵ. Then for any zi and all t ≥ 0,
the following inequality holds:

P
[
∥zi − c∥ ≥ η−1

(√
k − 2

√
kt− ϵ

)]
≥ 1−e−t.

The proposition (proved in Appendix D) indicates
that most data (N ′) satisfy ∥z − c∥ ≥ r′ :=

η−1
(√

k − 2
√
kt− ϵ

)
with a probability of approximately

(
N ′

N

)
(1 − e−t)N

′
e−t(N−N ′), where

r′ is close to r̂. This means there is almost no normal training data within the range [0, r′], i.e.
normality within the range is not supported by the normal training data. An intuitive example is:

Example 1. Assume the hypersphere is centered at the origin. Consider a data point with all
features very close or even equal to zero. This point is very different from the normal training data
and should be abnormal data. However, according to the metric ∥z̃ − c̃∥, this point is still in the
hypersphere and is finally detected as normal data.

Given the implications of Proposition 2, we recognize that in high-dimensional spaces, traditional
distance-to-center based anomaly scores (equation 6) may lose their reliability due to the concentra-
tion of measure phenomenon. Figure 4 shows a real example of abnormal data falling into a region
close to the center of the hypersphere. In addition to the soap-bubble phenomenon, we claim that
the data distribution in a high-dimensional sphere is very sparse when the number n of the training
data is limited. This means that when n is not sufficiently large, there could be large empty holes
or regions in which normality is not supported because of the randomness. It is not sufficient to
treat data that fall into holes or regions as normal data. Intuitively, for example, the distribution of n
random points in a 3-D sphere of radius r is much sparser than that in a 2-D circle of radius r. More
formally, in a hypersphere of radius r in k-dimensional space, the expected number of data points
per unit volume is ϱk = nΓ(k/2+1)

πk/2rk
, where Γ is Euler’s gamma function. When r is not too small,

ϱk increases rapidly as k decreases. See below.

Example 2. Suppose n = 1000, r = 5. Then ϱ2 ≈ 12.7, ϱ5 ≈ 0.06, and ϱ10 < 0.0001.

We hope to construct a more compact decision region, one with a much larger ϱk, without changing
the feature dimensions.
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(a) Training Data (b) Testing Data

COX2 1; DOHSCFigure 4: Illustration of inevitable flaws in DOHSC on both the training and testing data of COX2.
Left: the ℓ2-norm distribution of 4-dimensional distances learned from the real dataset; Right: the
pseudo-layout in two-dimensional space sketched by reference to the empirical distribution.

3.2 ARCHITECTURE OF DO2HSC

To solve the issues discussed in the previous section, we propose an improved approach, DO2HSC,
which sets the decision boundary as an interval region between two co-centered hyperspheres. This
can narrow the scope of the decision area to induce normal data to fill as much of the entire interval
area as possible.

After the same representation learning stage, we first utilize the DOHSC model for a few epochs
to initialize the large radius rmax and small radius rmin of the interval area according to the 1 − ν
percentile and ν of the sample distance distribution, respectively. The aforementioned descriptions
can be mathematically denoted as follows:

rmax = argmin
r

P(D ≤ r) ≥ ν, rmin = argmin
r

P(D ≤ r) ≥ 1− ν. (7)

After fixing rmax and rmin, the objective function of DO2HSC is formulated as follows:

min
Θ,W

1

b

b∑
i=1

(max{di, rmax} −min{di, rmin}) +
λ

2

∑
W∈W

∥W∥2F . (8)

This decision loss has the lowest bound rmax − rmin. In addition, the evaluation standard of the test
data must also be changed based on this interval structure. Specifically, all instances located in the
inner hypersphere and outside the outer hypersphere should be identified as anomalous individuals;
only those located in the interval area should be regarded as normal data. We reset a new score
function to award the positive samples beyond [rmin, rmax] while punishing the negative samples
within this range. Accordingly, the distinctive scores are calculated by

si = (di − rmax) · (di − rmin), (9)
where i ∈ {1, ..., n}. In this manner, we can also effectively identify a sample’s abnormality based
on its score. In general, an improved deep anomaly detection algorithm changes the decision bound-
ary and makes the normal area more compact. Furthermore, a new practical evaluation was proposed
to adapt to the improved detection method. Finally, we summarize the detailed optimization proce-
dures in Algorithm 2 (see Appendix A).

The following proposition justifies the superiority of bi-hypersphere compression over single-
hypersphere contraction from another perspective:
Proposition 3. Suppose the number of normal training data is n, the radius of the hypersphere
given by DOHSC is rmax, and the radii of the hyperspheres given by DO2HSC are rmax and rmin
respectively. Without loss of generality, assume that all the training data are included in the learned
decision regions. The ratio between the support densities of the decision regions given by DO2HSC
and DOHSC is κ = 1

1−(rmin/rmax)
k .

In the proposition (proved in Appendix E), density is defined as the number of normal data in unit
volume. A higher density indicates a higher confidence in treating a data point falling into the deci-
sion region as normal data, or treating a data point falling outside the decision region as anomalous
data. Because κ > 1, the DO2HSC provides a more reliable decision region than the DOHSC. The
advantage of the DO2HSC over the DOHSC is more significant when k is smaller or rmin is closer
to rmax. Here are some examples.

6
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Example 3. Suppose k = 50. When rmin/rmax = 0.9, κ ≈ 1.01. When rmin/rmax = 0.99, κ ≈ 2.5.
Suppose k = 10. When rmin/rmax = 0.9, κ ≈ 1.5. When rmin/rmax = 0.99, κ ≈ 10.5.

3.3 GENERALIZATION TO GRAPH-LEVEL ANOMALY DETECTION

Given a set of graphs G = {G1, ..., GN} with N samples, the proposed model aims to learn a
k-dimensional representation and then set a soft boundary accordingly. In this paper, the Graph
Isomorphism Network (GIN) (Xu et al., 2019) is employed to obtain the graph representation in
three stages: first, input the graph data and integrate neighbors of the current node (AGGREGATE);
second, combine neighbor and current node features (CONCAT); and finally, all node information
(READOUT) is integrated into one global representation. Mathematically, the i-th node features of
l-th layer and the global features of its affiliated j-th graph are denoted by

ziΦ = CONCAT({z(l)i }Ll=1), ZΦ(Gj) = READOUT({ziΦ}
|Gj |
i=1 ), (10)

where ziΦ ∈ R1×k and ZΦ(Gj) ∈ R1×k. To integrate the contained information and enhance the
differentiation between node- and global-level representations, we append additional fully connected
layers denoted by the forms MΥ(·) and TΨ(·), respectively, where Υ and Ψ are the parameters of
the added layers. So the integrated node-level and graph-level representations are

hi
Φ,Υ := MΥ(z

i
Φ); HΦ,Ψ(Gj) := TΨ(ZΦ(Gj)). (11)

To better capture the local information, we utilize the batch optimization property of neural networks
to maximize the mutual information (MI) between local and global representations in each batch
G ⊆ G, which is defined by (Sun et al., 2020) as follows:

Φ̂, Ψ̂, Υ̂ = argmax
Φ,Ψ,Υ

IΦ,Ψ,Υ (hΦ,Υ,HΦ,Ψ(G)) . (12)

Specifically, the mutual information estimator IΦ,Ψ,Υ follows the Jensen-Shannon MI estimator
(Nowozin et al., 2016) with a positive-negative sampling method, as follows:

IΦ,Ψ,Υ (hΦ,Υ,HΦ,Ψ(G)) :=
∑

Gj∈G

1

|Gj |
∑
u∈Gj

IΦ,Ψ,Υ

(
hu
Φ,Υ(Gj),HΦ,Ψ(G)

)
=

∑
Gj∈G

1

|Gj |
∑
u∈Gj

[
E
(
−σ

(
−hu

Φ,Υ(x
+)×HΦ,Ψ(x)

) )
−E

(
σ
(
hu
Φ,Υ(x

−)×HΦ,Ψ(x)
) )]

,

(13)

where σ(z) = log(1 + ez). For x as an input sample graph, we calculate the expected mutual
information using its positive samples x+ and negative samples x−, which are generated from the
distribution across all graphs in a subset. Given that G = (VG, EG) and the node set VG = {vi}|G|

i=1,
the positive and negative samples are divided in this manner: x+ = xij if vi ∈ Gj otherwise,
x+ = 0. Additionally, x− produces the opposite result for each of the above conditions. Thus, a
data-enclosing decision boundary is required for our anomaly detection task. Let H̃Φ,Ψ,Θ(G) =
ProjΘ(HΦ,Ψ(G)), the center of this decision boundary should be initialized through

c̃ =
1

N

N∑
i=1

H̃Φ,Ψ,Θ(Gi). (14)

Collectively, the weight parameters of Φ, Ψ and Υ are Q := Φ ∪ Ψ ∪ Υ, and let R(Q) =∑
Q∈Q ∥Q∥2F , we formulate the objective function of the graph-level DOHSC as

min
Θ,Φ,Ψ,Υ

1

|G|

|G|∑
i=1

∥H̃Φ,Ψ,Θ(Gi)− c̃∥2 − λ
∑
G∈G

IΦ,Ψ,Υ

(
hΦ,Υ, H̃Φ,Ψ,Θ(G)

)
+

µ

2
R(Q), (15)

where |G| denotes the number of graphs in batch G and λ is a trade-off factor, the third term
is a network weight decay regularizer with the hyperparameter µ. Correspondingly, the objective
function of graph-level DO2HSC is

min
Θ,Φ,Ψ,Υ

1

|G|

|G|∑
i=1

(max{di, rmax} −min{di, rmin})− λ
∑
G∈G

IΦ,Ψ,Υ

(
hΦ,Υ, H̃Φ,Ψ,Θ(G)

)
+

µ

2
R(Q).

(16)
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4 NUMERICAL RESULTS

4.1 EXPERIMENTS ON IMAGE DATA

Datasets: Two image datasets (Fashion-MNIST, CIFAR-10) are chosen to conduct this experiment.
Please refer to the detailed statistic descriptions in Appendix F.

Table 1: Average AUCs (%) in one-class anomaly detection
on CIFAR-10. * denotes we run the official released code to
obtain the results, and the top two results are marked in bold.

Normal Class Airplane Auto
Mobile Bird Cat Deer Dog Frog Horse Ship Truck

Deep SVDD 61.7 65.9 50.8 59.1 60.9 65.7 67.7 67.3 75.9 73.1
OCGAN 75.7 53.1 64.0 62.0 72.3 62.0 72.3 57.5 82.0 55.4
DROCC* 82.1 64.8 69.2 64.4 72.8 66.5 68.6 67.5 79.3 60.6
HRN-L2 80.6 48.2 64.9 57.4 73.3 61.0 74.1 55.5 79.9 71.6
HRN 77.3 69.9 60.6 64.4 71.5 67.4 77.4 64.9 82.5 77.3
PLAD 82.5 80.8 68.8 65.2 71.6 71.2 76.4 73.5 80.6 80.5

DOHSC 80.3
(0.0)

81.0
(0.0)

70.4
(1.9)

68.0
(1.8)

72.1
(0.0)

72.4
(2.1)

83.1
(0.0)

74.1
(0.4)

83.3
(0.7)

81.1
(0.7)

DO2HSC 81.3
(0.2)

82.7
(0.3)

71.3
(0.4)

71.2
(1.3)

72.9
(2.1)

72.8
(0.2)

83.0
(0.6)

75.5
(0.4)

84.4
(0.5)

82.0
(0.9)

Baselines: We followed the settings
in (Ruff et al., 2018) and utilized the
Area Under Operating Characteris-
tic Curve (AUC) of several state-
of-the-art anomaly detection algo-
rithms, including Deep SVDD (Ruff
et al., 2018), OCGAN (Perera et al.,
2019), HRN-L2 and HRN (Hu et al.,
2020), PLAD (Cai & Fan, 2022),
and DROCC (Goyal et al., 2020).
All SOTAs’ results are given accord-
ing to their officially reported results
or are reproduced by official codes.
Considering that there is not much room for performance improvement on Fashion-MNIST, we only
reproduced the results of recent or most relative algorithms, which contains Deep SVDD (Ruff et al.,
2018), and DROCC (Goyal et al., 2020). The network architecture of Deep SVDD is set the same
as ours for fairness.

Results: The experimental results are listed in Table 1. On CIFAR-10, both DOHSC and DO2HSC
surpassed SOTAs, especially for Dog and Frog. Second, DO2HSC obtained better results compared
with DOHSC, which further verifies the effectiveness of bi-hypersphere anomaly detection and fully
demonstrates its applicability to image data. It is also worth mentioning that Deep SVDD plays an
important baseline role relative to DOHSC, and DOHSC outperforms it by a large margin in all
classes. This illustrates the significant meaning of the proposed orthogonal projection method is
constructive. The result of Fashion-MNIST is in Appendix G.

4.2 EXPERIMENTS ON TABULAR DATA

Table 2: Average F1-scores with the standard devi-
ation in one-class anomaly detection on two tabular
datasets. The best two results are marked in bold.

Thyroid Arrhythmia

OCSVM (Schölkopf et al., 1999) 0.56 ± 0.01 0.64 ± 0.01
Deep SVDD (Ruff et al., 2018) 0.73 ± 0.00 0.54 ± 0.01

LOF (Breunig et al., 2000) 0.54 ± 0.01 0.51 ± 0.01
GOAD (Bergman & Hoshen, 2020) 0.75 ± 0.01 0.52 ± 0.02

DROCC (Goyal et al., 2020) 0.78 ± 0.03 0.69 ± 0.02
PLAD (Cai & Fan, 2022) 0.77 ± 0.01 0.71 ± 0.02

DOHSC 0.92 ± 0.01 0.70 ± 0.03
DO2HSC 0.98 ± 0.59 0.74 ± 0.02

Datasets: Here, we use two tabular datasets
(Thyroid, Arrhythmia), and we followed the
data split settings in Zong et al. (2018).

Results: The F1-scores of our methods and
six baselines are reported in Table 2. A signif-
icant margin was observed between the base-
lines and ours, especially the results of Thy-
roid. Despite the challenge posed by the
small sample size of the Arrhythmia data,
DO2HSC still outperforms PLAD by a mar-
gin of 3%. Similarly, the orthogonal projec-
tion of DOHSC successfully standardized the
results of Deep SVDD.

4.3 EXPERIMENTS ON GRAPH DATA

Datasets: We further evaluate our models on six real-world graph datasets2 (COLLAB, COX2,
ER MD, MUTAG, DD and IMDB-Binary). Our experiments followed the standard one-class set-
tings and data-split method in a previous work (Zhao & Akoglu, 2021; Qiu et al., 2022).

Baselines: We compare our methods with the following methods, including four graph kernels
combined with OCSVM and four state-of-the-art baselines: RW (Gärtner et al., 2003; Kashima
et al., 2003), SP (Borgwardt & Kriegel, 2005), WL (Shervashidze et al., 2011) and NH (Hido &

2https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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Figure 6: 3-D plots of DO2HSC on MUTAG.

Table 3: Average AUCs with standard deviation (10 trials) of different graph-level anomaly detection
algorithms. ‘DSVDD’ stands for ‘Deep SVDD’. We assess models by regarding every data class as
normal data, respectively. The best two results are highlighted in bold and ‘–’ means out of memory.

COLLAB MUTAG ER MD

0 1 2 0 1 0 1
SP+OCSVM 0.5910 ± 0.0000 0.8397 ± 0.0000 0.7902 ± 0.0000 0.5917 ± 0.0000 0.2608 ± 0.0000 0.4092 ± 0.0000 0.3824 ± 0.0000
WL+OCSVM 0.5122 ± 0.0000 0.8054 ± 0.0000 0.7996 ± 0.0000 0.6509 ± 0.0000 0.2960 ± 0.0000 0.4571 ± 0.0000 0.3262 ± 0.0000
NH+OCSVM 0.5976 ± 0.0000 0.8054 ± 0.0000 0.6414 ± 0.0000 0.7959 ± 0.0274 0.1679 ± 0.0062 0.5155 ± 0.0200 0.3648 ± 0.0000
RW+OCSVM – – – 0.8698 ± 0.0000 0.1504 ± 0.0000 0.4820 ± 0.0000 0.3484 ± 0.0000

OCGIN 0.4217 ± 0.0606 0.7565 ± 0.2035 0.1906 ± 0.0857 0.8491 ± 0.0424 0.7466 ± 0.0168 0.5645 ± 0.0323 0.4358 ± 0.0538
infoGraph+DSVDD 0.5662 ± 0.0597 0.7926 ± 0.0986 0.4062 ± 0.0978 0.8805 ± 0.0448 0.6166 ± 0.2052 0.5312 ± 0.1545 0.5082 ± 0.0704
GLocalKD 0.4638 ± 0.0003 0.4330 ± 0.0016 0.4792 ± 0.0004 0.3952 ± 0.2258 0.2965 ± 0.2641 0.5781 ± 0.1790 0.7154 ± 0.0000
OCGTL 0.6504 ± 0.0433 0.8908 ± 0.0239 0.4029 ± 0.0541 0.6570 ± 0.0210 0.7579 ± 0.2212 0.2755 ± 0.0317 0.6915 ± 0.0207

DOHSC 0.9185 ± 0.0455 0.9755 ± 0.0030 0.8826 ± 0.0250 0.8822 ± 0.0432 0.8115 ± 0.0279 0.6620 ± 0.0308 0.5184 ± 0.0793
DO2HSC 0.9390 ± 0.0025 0.9836 ± 0.0115 0.8835 ± 0.0118 0.9089 ± 0.0609 0.8250 ± 0.0790 0.6867 ± 0.0226 0.7351 ± 0.0159

Kashima, 2009), OCGIN (Zhao & Akoglu, 2021), infoGraph+Deep SVDD (Sun et al., 2020; Ruff
et al., 2018), GLocalKD (Ma et al., 2022) and OCGTL (Qiu et al., 2022).

Results: Table 3 shows the comparable results of graph-level anomaly detection. 1) The proposed
methods achieved the best AUC values compared to the other algorithms on all datasets. Both out-
perform the other state-of-the-art baselines. 2) DO2HSC is obviously more effective than DOHSC,
especially since we observed that there exists a large improvement (exceeding 20%) in Class 1 of
ER MD between DOHSC and DO2HSC. A distance distribution visualization is provided to show
their differences in Figure 5. Owing to length limitations, please refer to Appendix H for the re-
maining results. 3) The anomaly detection visualization results of DO2HSC displayed in Figure 6
also demonstrate excellent performance. We drew them by setting the projection dimension to 3,
and please refer to Appendix I for the results of different perspectives.

4.4 MORE RESULTS AND ANALYSIS

We provide the time and space complexity analysis in Appendix B. Also, the ablation study
(including orthogonal projection, mutual information maximization, etc.), parameter sensitivity
(e.g., different percentile settings), robustness analysis, and more visualization results are shown in
Appendices J and I, respectively.

5 CONCLUSION

This paper proposes two novel end-to-end AD methods, DOHSC and DO2HSC, that mitigate the
possible shortcomings of hypersphere boundary learning by applying an orthogonal projection for
global representation. Furthermore, DO2HSC projects normal data between the interval areas of
two co-centered hyperspheres to significantly alleviate the soap-bubble issue and the incompactness
of a single hypersphere. We also extended DOHSC and DO2HSC to graph-level anomaly detection,
which combines the effectiveness of mutual information between the node level and global features
to learn graph representation and the power of hypersphere compression. The comprehensive exper-
imental results strongly demonstrate the superiority of the DOHSC and DO2HSC on multifarious
datasets. One limitation of this work is that we did not consider cases in which the training data
consisted of multiple classes of normal data, which is beyond the scope of this study. Our source
code is available at https://github.com/wownice333/DOHSC-DO2HSC.
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A SUPPLEMENTED ALGORITHM PROCEDURES

Here, we present the detailed procedures for DOHSC and DO2HSC in Algorithms 1 and 2, respec-
tively. It begins with a representation learning module and promotes the training data to approximate
the center of a hypersphere while adding an orthogonal projection layer. In addition, DO2HSC is
recapped in Algorithm 2 and begins with the same representation learning. In contrast, DOHSC
utilizes a few epochs to initialize the decision boundaries, after which improved optimization is
applied. A graph-level extension is presented in Algorithm 3. The main difference is that graph rep-
resentation learning with maximization of the mutual information constraint is applied to substitute
the common representation learning module. Similarly, the graph-level DO2HSC is the combination
of the representation learning part in the graph-level DOHSC and the anomaly detection part in the
common DO2HSC.

B TIME AND SPACE COMPLEXITY

The models of DOHSC and DO2HSC can be trained by mini-batch optimization. Suppose the
batch size is b, the maximum width of the hidden layers of the L-layer neural network is wmax,
and the dimension of the input data is d, then the time complexities of the proposed methods are at
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Algorithm 1 Deep Orthogonal Hypersphere Contraction (DOHSC)
Input: The input data X ∈ Rn×d, dimensions of the latent representation k and orthogonal pro-

jection layer k′, a trade-off parameter λ and the coefficient of regularization term µ, pretraining
epoch T , learning rate η.

Output: The anomaly detection scores s.
1: Initialize the auto-encoder network parameters W = {Wl,bl}Ll=1 and the orthogonal projection

layer parameter Θ;
2: for t → T do
3: for each batch do
4: Obtain the latent representation Z = f enc

W (X); ▷ Pretraining Stage
5: Update the orthogonal parameter Θ of orthogonal projection layer by Eq. (3);
6: Project the latent representation via Eq. (2);
7: Calculate reconstruction loss via 1

n

∑n
i=1 ∥f dec

W
(
ProjΘ(f

enc
W (xi))

)
− xi∥2;

8: Back-propagate the network, update W and Θ, respectively;
9: end for

10: end for
11: Initialize the center of hypersphere by c = 1

n

∑n
i=1 f

enc
W (xi);

12: repeat
13: for each batch do
14: Calculate anomaly detection loss via Optimization (4); ▷ Training Stage
15: Repeat steps 4-6;

16: Back-propagate the encoder network and update {W}
L
2

l=1 and Θ, respectively;
17: end for
18: until convergence
19: Compute decision boundary r by Eq. (5);
20: Calculate the anomaly detection scores s through Eq. (6);
21: return The anomaly detection scores s.

most O(bdwmaxLT ), where T is the total number of iterations. The space complexities are at most
O(bd+dwmax+(L−1)w2

max). We see that the complexities are linear with the number of samples,
which means the proposed methods are scalable to large datasets. Particularly, for high-dimensional
data (very large d), we can use small wmax to improve the efficiency.

C RELATED PROOF OF BI-HYPERSPHERE LEARNING MOTIVATION

The traditional idea of detecting outliers is to inspect the distribution tails under the ideal assumption
that the normal data are Gaussian. Following this assumption, one may argue that an anomalous
sample can be distinguished by its large Euclidean distance from the data center (ℓ2 norm ∥z− c∥,
where c denotes the centroid). Accordingly, the abnormal dataset is {z : ∥z − c∥ > r} for a
decision boundary r. However, in high dimensional space, Gaussian distributions look like soap-
bubble 3, which means the normal data are more likely to be located in a bi-hypersphere (Vershynin,
2018), such as {z : rmin < ∥z− c∥ < rmax}. To better understand this counterintuitive behavior, we
generate normal samples X ∼ N (0, Id), where d is the data dimension in {1, 10, 50, 100, 200, 500}.
As shown in Figure 3 of Section 2.2.1, it indicates that only the univariate Gaussian has a near-zero
mode, whereas other high-dimensional Gaussian distributions leave many off-center spaces in the
blank. The soap-bubble problem in high-dimensional distributions is well demonstrated in Table 4;
the higher the dimension, the greater the quantity of data further away from the center, especially for
a 0.01-quantile distance. Thus, we cannot make the sanguine assumption that all of the normal data
are located within the radius of a hypersphere (i.e., {z : ∥z− c∥ < r}). Using Lemma 1 of (Laurent
& Massart, 2000), we can prove that Proposition 1, which matches the values in Table 4 that when
the dimension is larger, normal data are more likely to lie away from the center.

We also simulated a possible case of outlier detection, in which data were all sampled from a 16-
dimensional Gaussian with orthogonal covariance:10,000 normal samples follow N (0, I), the first
group of 1,000 outliers is from N (µ1,

1
10I), the second group of 500 outliers are from N (µ2, I),

3https://www.inference.vc/high-dimensional-gaussian-distributions-are-soap-bubble/
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Algorithm 2 Deep Orthogonal Bi-Hypersphere Compression (DO2HSC)
Input: The input data X ∈ Rn×d, dimensions of the latent representation k and orthogonal pro-

jection layer k′, a trade-off parameter λ and the coefficient of regularization term µ, pretraining
epoch T1, iterations of initializing decision boundaries T2, learning rate η.

Output: The anomaly detection scores s.
Initialize the auto-encoder network parameters W = {Wl,bl}Ll=1 and the orthogonal projection
layer parameter Θ;

2: for t → T1 do
for each batch do

4: Repeat steps 4-8 of DOHSC; ▷ Pretraining Stage
end for

6: end for
Update the orthogonal parameter Θ of orthogonal projection layer by Eq. (3);

8: Obtain the global orthogonal latent representation by Eq. (2);
Initialize the center of hypersphere by c = 1

n

∑n
i=1 f

enc
W (xi);

10: for t → T2 do
Repeat steps 13-17 of DOHSC; ▷ Pretraining Stage

12: end for
Compute decision boundary r of DOHSC by Eq. (5);

14: Initialize decision boundaries rmax and rmin via Eq. (7);
repeat

16: for each batch do
Obtain the latent representation Z = f enc

W (X); ▷ Training Stage
18: Update the orthogonal parameter Θ of orthogonal projection layer by Eq. (3);

Project the latent representation via Eq. (2);
20: Calculate the improved total loss via Optimization (8);

Back-propagate the network, update {W}
L
2

l=1 and Θ, respectively;
22: end for

until convergence
24: Calculate the anomaly detection scores s through Eq. (9);

return The anomaly detection scores s.

Figure 7: Histogram of distances (Euclidean norm) from the center of normal samples under
16-dimensional Gaussian distributions N (0, I). Three groups of anomalous data are also 16-
dimensional and respectively sampled from N (µ1,

1
10I), N (µ2, I), and N (µ3, 5I), where the pop-

ulation means µ1, µ2, µ3 are randomized within [0, 1] for each dimension.

and the last group of 2,000 outliers are from N (µ3, 5I). Figure 7 shows that abnormal data from
other distributions (group-1 outliers) could fall a small distance away from the center of the normal
samples.
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Algorithm 3 Graph-Level Deep Orthogonal Hypersphere Contraction
Input: The input graph set G, dimensions of GIN hidden layers k and orthogonal projection layer

k′, a trade-off parameter λ and the coefficient of regularization term µ, pretraining epoch T ,
learning rate η.

Output: The anomaly detection scores s.
Initialize the network parameters Φ, Ψ, Υ and the orthogonal projection layer parameter Θ;
for t → T do

3: for each batch G do
Obtain the global graph representation HΦ,Ψ(G);
Update the orthogonal parameter Θ of orthogonal projection layer by Eq. (3);

6: Project the global graph representation via H̃Φ,Ψ,Θ(G) = ProjΘ(HΦ,Ψ(G));

Calculate IΦ,Ψ,Υ

(
hΦ,Υ, H̃Φ,Ψ(G)

)
via Eq. (13);

Back-propagate GIN, update Φ, Ψ, Θ and Υ, respectively;
9: end for

end for
Initialize the center of hypersphere by Eq. (14);

12: repeat
for each batch G do

Repeat steps 4-6;
15: Calculate total loss via Optimization (15);

Back-propagate GIN and update Φ, Ψ, Υ and Θ, respectively;
end for

18: until convergence
Compute decision boundary r by Eq. (5);
Calculate the anomaly detection scores s through Eq. (6);

21: return The anomaly detection scores s.

Table 4: Offcenter distance under multivariate Gaussian at different dimensions and quantiles.
Quantile (correspond to rmin) dim=1 dim=10 dim=50 dim=100 dim=200 dim=500

0.01 0.0127 1.5957 5.5035 8.3817 12.5117 20.6978
0.25 0.3115 2.5829 6.5380 9.4908 13.6247 21.8542
0.50 0.6671 3.0504 7.0141 9.9662 14.1054 22.3337
0.75 1.1471 3.5399 7.5032 10.4386 14.5949 22.8200
0.99 2.5921 4.8265 8.7723 11.6049 15.7913 24.0245

D PROOF FOR PROPOSITION 2

Proof. Since f makes s obey N (c̄, Ik), according to Proposition 1, we have

P
[
∥s− c̄∥ ≥

√
k − 2

√
kt

]
≥ 1− e−t.

Since f is η-Lipschitz, we have

∥s− f(c)∥ = ∥f(z)− f(c)∥ ≤ η∥z− c∥.

It follows that
∥z− c∥ ≥η−1∥s− c̄+ c̄− f(c)∥

≥η−1 (∥s− c̄∥ − ∥c̄− f(c)∥)
≥η−1 (∥s− c̄∥ − ϵ) .

Now we have

P
[
∥z− c∥ ≥ η−1

(√
k − 2

√
kt− ϵ

)]
≥ 1− e−t.

This finished the proof.
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E PROOF FOR PROPOSITION 3

Proof. The volume of a hyperball of radius r in k-dimension space is Vk(r) = πk/2

Γ
(
k
2+1

)rk, where

Γ is Euler’s gamma function. Then, the volume of the hypersphere given by DOHSC is Vmax =
πk/2

Γ
(
k
2+1

)rkmax and the volume of the smaller hypersphere given by DO2HSC is Vmin = πk/2

Γ
(
k
2+1

)rkmin.

Then, the volume of the decision region given by DO2HSC is Vmax − Vmin. The density of the
decision region is defined as the number of normal data in unit volume. Therefore, the ratio between
the densities of DO2HSC and DOHSC can be computed as

ρ =
n/(Vmax − Vmin)

n/Vmax
=

πk/2

Γ
(
k
2+1

)rkmax

πk/2

Γ
(
k
2+1

)rkmax − πk/2

Γ
(
k
2+1

)rkmin

=
1

1−
(

rmin
rmax

)k
. (17)

This finished the proof.

In the case of rmin = rmax, the volume of DO2HSC is close to an infinitely thin shell, essentially
transforming into the surface of a hypersphere. In this scenario, the data density of DO2HSC is sig-
nificantly higher compared with that of DOHSC. However, it is important to note that this situation
is quite rare, particularly in high-dimensional space.

F EXPERIMENT CONFIGURATION

In this section, experimental settings are presented for reproduction. First, each graph dataset was
divided into two parts: the training and testing sets. We randomly sampled 80 percent of the normal
graph as the training set and the remaining normal graph, together with the randomly sampled ab-
normal data in a one-to-one ratio to form the testing set. Regarding the image and tabular datasets,
the data splits are already provided in the paper. The detailed statistical information of all tested
datasets is given in Tables 5 and 6.

Table 5: Description for non-graph datasets.
Dataset Name Type # Instances # Dimension

Thyroid Tabular 3772 6
Arrhythmia Tabular 452 274

Fashion-MNIST Image 70000 28×28
CIFAR-10 Image 60000 32× 32× 3

Table 6: Description for six graph datasets.

Datasets # Graphs Avg.
# Nodes

Avg.
# Edges # Classes # Graph Labels

COLLAB 5000 74.49 2457.78 3 2600 / 775 / 1625
COX2 467 42.43 44.54 2 365 / 102

ER MD 446 21.33 234.85 2 265 / 181
MUTAG 188 17.93 19.79 2 63 / 125

DD 1178 284.32 715.66 2 691 / 487
IMDB-Binary 1000 19.77 96.53 2 500 / 500

In the image and tabular experiments, our backbone was consistent with the Deep SVDD,
and the preprocessing conformed to the same splits as DROCC. All results originated from
the corresponding papers or were reproduced according to the official code. Regarding our
DOHSC model, we set 10 epochs in the pretraining stage to initialize the center of the deci-
sion boundary and then train the model in 200 epochs. The percentile ν of r was selected from
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{0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.1, 0.3}. The improved method DO2HSC also sets a 10-
epoch pretraining stage and trains DOHSC for 50 epochs to initialize a suitable center and decision
boundaries rmax and rmin, where the percentile ν of rmax is the same as DOHSC. The main training
epoch was set to 200.

In the graph experiment, we adopted the classical AD method, One-Class SVM (OCSVM)
(Schölkopf et al., 2001), to compare graph-kernel baselines and used 10-fold cross-validation to
make a fair comparison. All graph kernels extract a kernel matrix via GraKel (Siglidis et al., 2020)
and apply the OCSVM in scikit-learn (Pedregosa et al., 2011). Specifically, we selected Floyd
Warshall as the SP kernel’s algorithm and set lambda as 0.01 for the RW kernel. The WL kernel
algorithm is sensitive to the number of iterations; therefore, we tested four different iterations {2,
5, 8, 10} and reported the best result for each experiment. The outputs were normalized for all the
graph kernels. For infoGraph+Deep SVDD, the first stage runs for 20 epochs, and the second stage
pretrains for 50 epochs and trains for 100 epochs. In OCGIN, GLocalKD, and OCGTL, the default
or reported parameter settings were adopted to reproduce the experimental results.

(a) DOHSC (b) DO2HSC

Figure 8: Convergence curves of the proposed models on the MUTAG dataset.

For the graph-level DOHSC, we first set one epoch in the pre-training stage to initialize the center
of the decision boundary and then train the model in 500 epochs. The convergence curves are
shown in Figure 8 to indicate that the final optimized results were adopted. The improved method
DO2HSC is also set as a 1-epoch pre-training stage and trains DOHSC for five epochs, where the
percentile ν of rmax is selected as 0.01. After initialization, the model was trained for 500 epochs.
For both proposed approaches, the trade-off factor λ was set to 10 to ensure decision loss as the
main optimization objective. The dimensions of the GIN hidden and orthogonal projection layers
were fixed at 16 and 8, respectively. For the backbone network, a 4-layer GIN and a 3-layer fully
connected neural network were adopted.

Finally, the averages and standard deviations of the Area Under the ROC curve (AUC) and F1-score
were used to support the comparable experiments by repeating each algorithm ten times. A higher
metric value indicates better performance.

G SUPPLEMENTED RESULTS ON FASHION-MNIST DATASET

The complete experimental results for the Fashion-MNIST image dataset are given in Table 7. A
detailed standard deviation can demonstrate fluctuations in performance. The proposed methods are
relatively stable, especially for DOHSC.

H SUPPLEMENTARY RESULTS OF GRAPH-LEVEL ANOMALY DETECTION

Here, we give the results of retained 3 graph datasets (COX2, DD, and IMDB-Binary) for graph-
level extension in Table 8. The proposed two models are superior on all datasets and behave much
more effectively compared with other SOTAs, which also supports our motivations for graph-level
anomaly detections.

I SUPPLEMENTED VISUALIZATION

This section presents the related supplemental visualization results of the anomaly detection task.
Figure 9 shows the distance distributions of the two-stage method, proposed model DOHSC, and
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Table 7: Average AUCs in one-class anomaly detection on Fashion-MNIST. (The best two results
are marked in bold.)

Normal Class Deep SVDD
(Ruff et al., 2018)

DROCC
(Goyal et al., 2020) DOHSC DO2HSC

T-shirt 0.8263 ± 0.0342 0.8931 ± 0.0072 0.9153 ± 0.0082 0.9196 ± 0.0064
Trouser 0.9632 ± 0.0072 0.9835 ± 0.0054 0.9817 ± 0.0060 0.9839 ± 0.0020
Pullover 0.7885 ± 0.0398 0.8656 ± 0.0140 0.8007 ± 0.0204 0.8768 ± 0.0122

Dress 0.8607 ± 0.0124 0.8776 ± 0.0269 0.9178 ± 0.0230 0.9171 ± 0.0084
Coat 0.8417 ± 0.0366 0.8453 ± 0.0143 0.8805 ± 0.0258 0.9038 ± 0.0140

Sandal 0.8902 ± 0.0281 0.9336 ± 0.0123 0.8932 ± 0.0287 0.9308 ± 0.0070
Shirt 0.7507 ± 0.0158 0.7789 ± 0.0188 0.8177 ± 0.0124 0.8022 ± 0.0045

Sneaker 0.9676 ± 0.0062 0.9624 ± 0.0059 0.9678 ± 0.0050 0.9677 ± 0.0075
Bag 0.9039 ± 0.0355 0.7797 ± 0.0749 0.9122 ± 0.0258 0.9090 ± 0.0105

Ankle Boot 0.9488 ± 0.0207 0.9589 ± 0.0207 0.9756 ± 0.0127 0.9785 ± 0.0038

Table 8: Average AUCs with standard deviation (10 trials) of different graph-level anomaly detection
algorithms. ‘DSVDD’ stands for ‘Deep SVDD’. We assess models by regarding every data class as
normal data, respectively. The best two results are highlighted in bold and ’–’ means out of memory.

COX2 DD IMDB-Binary
0 1 0 1 0 1

SP+OCSVM 0.5408 ± 0.0000 0.5760 ± 0.0000 0.6856 ± 0.0000 0.4474 ± 0.0000 0.4592 ± 0.0000 0.4716 ± 0.0000
WL+OCSVM 0.5990 ± 0.0000 0.5057 ± 0.0000 0.7397 ± 0.0000 0.4946 ± 0.0000 0.5157 ± 0.0000 0.4607 ± 0.0000
NH+OCSVM 0.4841 ± 0.0000 0.4717 ± 0.0000 0.7424 ± 0.0000 0.3684 ± 0.0000 0.5321 ± 0.0000 0.4652 ± 0.0000
RW+OCSVM 0.5243 ± 0.0000 0.6553 ± 0.0000 – – 0.4951 ± 0.0000 0.5311 ± 0.0000

OCGIN 0.5964 ± 0.0578 0.5683 ± 0.0768 0.6659 ± 0.0444 0.6003 ± 0.0534 0.4571 ± 0.1879 0.3736 ± 0.0816
infoGraph+DSVDD 0.4825 ± 0.0624 0.5029 ± 0.0700 0.3942 ± 0.0436 0.6484 ± 0.0236 0.6353 ± 0.0277 0.5836 ± 0.0995
GLocalKD 0.3861 ± 0.0131 0.3143 ± 0.0383 0.1952 ± 0.0000 0.2203 ± 0.0001 0.5383 ± 0.0124 0.4812 ± 0.0101
OCGTL 0.5541 ± 0.0320 0.4862 ± 0.0224 0.6990 ± 0.0260 0.6767 ± 0.0280 0.6510 ± 0.0180 0.6412 ± 0.0127

DOHSC 0.6263 ± 0.0333 0.6805 ± 0.0168 0.7083 ± 0.0188 0.7579 ± 0.0154 0.7160 ± 0.0600 0.7705 ± 0.0045
DO2HSC 0.6329 ± 0.0292 0.6923 ± 0.0433 0.7320 ± 0.0194 0.7651 ± 0.0317 0.7547 ± 0.0390 0.7737 ± 0.0503

          

        

 

    

   

    

 
  
 
 
 
 
 
  
 
 
 
 
  
 

              

           

                 

                          

        

 

 

 

 

 

  

  

  

  

  

 
  
 
 
 
 
 
  
 
 
 
 
  
 

           

                 

(a) infoGraph+Deep SVDD (b) DOHSC (c) DO2HSC

                  

        

 

    

    

    

    

   

    

    

    

    

   

 
  
 
 
 
 
 
  
 
 
 
 
  
 

              

           

                 

                                      

        

 

    

    

    

    

   

    

    

    

    

 
  
 
 
 
 
 
  
 
 
 
 
  
 

              

           

                 

                        

        

 

 

 

 

 

 

 

 

 

 
  
 
 
 
 
 
  
 
 
 
 
  
 

           

                 

                        

        

 

 

  

  

  

  

  

  

  

 
  
 
 
 
 
 
  
 
 
 
 
  
 

           

                 

Figure 9: Distance distributions were obtained by infoGraph+Deep SVDD, the proposed model,
and the improved proposed model on COX2. The first row represents the distance distribution of the
training samples in relation to the decision boundary. The last row indicates the distance distribution
of the test data with respect to the decision boundary.
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improved DO2HSC. Here, distance is defined as the distance between each sample and the center
of the decision hypersphere. Distance distribution denotes the sample proportion at this distance
interval relative to the corresponding total samples. It can be intuitively observed that most of
the distances of the instances were close to the decision boundary because of the fixed learned
representation. As mentioned earlier, the jointly trained algorithm mitigated this situation, and the
obtained representation caused many instances to have smaller distances from the center of the
sphere. Moreover, as mentioned in Section 2.2, anomalous data may occur in regions with less
training data, particularly in the region close to the center, which is also confirmed by (a) and (b) of
Figure 9. In contrast, DO2HSC effectively shrinks the decision area, and we find that the number of
outliers is obviously reduced owing to a more compact distribution of the training data.

The 3D visualization results of the training and testing stages are also presented the difference be-
tween them in Figures 10 and 11.

To further support the aforementioned statements, as shown in Figure 12, the anomalous samples
are located in the decision region and are closer to the center than other normal samples. On the
contrary, the result of DO2HSC effectively prevents this phenomenon.

  

  

 

 

 

 

 
     

    
   

  

  

  

  

  

 

  

 

 

 

 

    
        

           

  

  

 

 

 

 

(b) Testing Result

               

  

  

  

  

  

  

 

 

 

  

  

  

 

 

  
  

  
     

(a) Training Result

Figure 10: Visualization results of the DOHSC with MUTAG in different perspectives.

J PARAMETER SENSITIVITY AND ROBUSTNESS

To confirm the stability of our models, we analyzed the parameter sensitivity and robustness of
DOHSC and DO2HSC, respectively. Consider that the projection dimension varies in {4, 8, 16,
32, 64, 128}, whereas the hidden layer dimension of the GIN module ranges from 4 to 128. In
Figure 13, the DO2HSC model has less volatile performance than DOHSC, especially when the
training dataset is sampled from COX2 class 0, as shown in Subfigure (d). Noticeably, a higher
dimension of the GIN hidden layer usually displays a better AUC result because the quality of the
learned graph representations improves when the embedding space is sufficiently large.

In addition, we assessed different aspects of model robustness. More specifically, the AUC results
about two ”ratios” are displayed: 1) Different sampling ratios for the training set; 2) Different ratios
of noise disturbance for the learned representation. In Subfigures (c) and (f), the purple bars regard
normal data as class 0, whereas green bars treat normal data as class 1. Note that most AUC results
are elevated along with a higher ratio of authentic data in the training stage, demonstrating the
potential of our models in the unsupervised setting. On the other hand, when more noise is blended
into the training dataset, the AUC performances of the yellow line and blue line always remain stable
at a high level. This outcome verifies the robustness of our model in response to alien data.
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(a) Training Result

(b) Testing Result

MUTAG 0； DO2HSC

Figure 11: Visualization results of the DO2HSC with MUTAG in different perspectives.

(a) DOHSC (b) DO2HSC
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Figure 12: Anomaly detection comparison between DOHSC and DO2HSC on MUTAG.

The percentile parameter sensitivity is presented in this section. It is worth mentioning that
we tested DOHSC with varying percentiles in {0.01, 0.1, ..., 0.8} and tested DO2HSC only in
{0.01, 0.05, 0.1} because the two radii of DO2HSC are obtained by the percentiles ν and 1 − ν.
The two radii are equal when ν = 0.5 and the interval between the two co-centered hyperspheres
disappears. From the table, the performance would decrease when a larger percentile is set obvi-
ously. For example, on the MUTAG dataset, setting the percentile as 0.01 is more beneficial for
DOHSC than setting it as 0.8, and setting the percentile as 0.01 is better than setting it as 0.1 for
DO2HSC due to the change of the interval area.

Table 9: Parameter sensitivity of DOHSC with different percentiles (all normal data is set to Class
0.)

Dataset Percentile
0.005 0.01 0.1 0.5 0.8

COX2 0.5446 (0.0854) 0.6263 (0.0333) 0.6022 (0.0789) 0.5232 (0.0494) 0.5523 (0.0572)
ER MD 0.6265 (0.1442) 0.6620 (0.0308) 0.7497 (0.0411) 0.6265 (0.1442) 0.5141 (0.0398)
MUTAG 0.8185 (0.0543) 0.8822 (0.0432) 0.8540 (0.0694) 0.7790 (0.0912) 0.8675 (0.1287)

DD 0.6349 (0.0380) 0.7083 (0.0188) 0.6597 (0.0270) 0.6545 (0.0268) 0.6327 (0.0206)
IMDB-Binary 0.7232 (0.0314) 0.7160 (0.0600) 0.7217 (0.0418) 0.7073 (0.0274) 0.6773 (0.0566)
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(a) (b) (c)

(d) (f)(e)

Figure 13: Parameter sensitivity and robustness of the proposed models. (a)-(b) Parameter sensitivity
of DOHSC with different hidden layer dimensions of GIN and projection dimensions on COX2 with
Class 0 and Class 1, respectively. (d)-(e) Parameter sensitivity of DO2HSC with the same settings.
(c) and (f) shows the performance impacts with different ratios of the training set on the IMDB-
Binary dataset and added noise disturbances on the MUTAG dataset while training DOHSC and
DO2HSC, respectively.

Table 10: Parameter sensitivity of DO2HSC with different percentiles (all normal data is set to Class
0.)

Dataset Percentile
0.005 0.01 0.05 0.1

COX2 0.5810 (0.0354) 0.6329 (0.0292) 0.6149 (0.0187) 0.5830 (0.0713)
ER MD 0.6136 (0.0769) 0.6226 (0.0890) 0.6867 (0.0226) 0.6331 (0.1748)
MUTAG 0.7278 (0.0478) 0.9089 (0.0609) 0.8041 (0.1006) 0.6769 (0.1207)

DD 0.7103 (0.0098) 0.7320 (0.0194) 0.6909 (0.0208) 0.6765 (0.0286)
IMDB-Binary 0.6590 (0.0287) 0.6406 (0.0642) 0.5348 (0.0486) 0.5701 (0.0740)

K SUPPLEMENTED RESULTS OF ABLATION STUDY

First, an ablation study of whether orthogonal projection requires standardization was conducted.
More precisely, we pursue orthogonal features, that is, finding a projection matrix for orthogonal
latent representation (with standardization) instead of computing the projection onto the column
or row space of the projection matrix (non-standardization), although they are closely related to
each other. This is equivalent to performing PCA and using standardized principal components.
Therefore, we compared the DOHSC with and without standardization. From Table 11, 1) it is
observed that the performance of DOHSC without standardization is acceptable, and most of its
results are better than those of the two-stage baseline, i.e., infoGraph+Deep SVDD. This verifies the
superiority of the end-to-end method over two-stage baselines. 2) The standardized model results
outperform the non-standardized model results in all cases. 3) DO2HSC surpasses DOHSC no
matter with/without the orthogonal projection layer.

Besides, the ablation study using the mutual information maximization loss is shown in Table 12. It
can be intuitively concluded that mutual information loss does not always have a positive effect on
all data. This also indicates that the designed anomaly detection optimization method and orthogonal
projection are effective, instead of entirely, owing to the loss of mutual information.
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Table 11: Comparison of the orthogonal projection layer with or w/o standardization. ‘DSVDD’
stands for ‘Deep SVDD’. ’Non-Std stands for ’Non-Standardization’.

Class infoGraph+DSVDD DOHSC (Non-Std) DOHSC DO2HSC (Non-Std) DO2HSC

MUTAG 0 0.8805 ± 0.0448 0.8521 ± 0.0650 0.8822 ± 0.0432 0.9024 ± 0.0207 0.9089 ± 0.0609
1 0.6166 ± 0.2052 0.6918 ± 0.1467 0.8115 ± 0.0279 0.7624 ± 0.0248 0.8250 ± 0.0790

COX2 0 0.4825 ± 0.0624 0.5800 ± 0.0473 0.6263 ± 0.0333 0.6127 ± 0.0191 0.6329 ± 0.0292
1 0.5029 ± 0.0700 0.5029 ± 0.0697 0.6805 ± 0.0168 0.6303 ± 0.0276 0.6923 ± 0.0433

ER MD 0 0.5312 ± 0.1545 0.4881 ± 0.0626 0.6620 ± 0.0308 0.6148 ± 0.0484 0.6867 ± 0.0226
1 0.5082 ± 0.0704 0.5140 ± 0.0356 0.5184 ± 0.0793 0.7043 ± 0.0011 0.7351 ± 0.0159

DD 0 0.3942 ± 0.0436 0.4029 ± 0.0354 0.7083 ± 0.0188 0.7308 ± 0.0015 0.7320 ± 0.0194
1 0.6484 ± 0.0236 0.6903 ± 0.0215 0.7579 ± 0.0154 0.7000 ± 0.0165 0.7651 ± 0.0317

IMDB-Binary 0 0.6353 ± 0.0277 0.5149 ± 0.0655 0.6609 ± 0.0033 0.6387 ± 0.0578 0.7547 ± 0.0390
1 0.5836 ± 0.0995 0.6505 ± 0.0585 0.7705 ± 0.0045 0.7032 ± 0.0328 0.7737 ± 0.0503

COLLAB
0 0.5662 ± 0.0597 0.6067 ± 0.1007 0.9185 ± 0.0455 0.7089 ± 0.0335 0.9390 ± 0.0025
1 0.7926 ± 0.0986 0.8958 ± 0.0141 0.9755 ± 0.0030 0.9033 ± 0.0089 0.9836 ± 0.0115
2 0.4062 ± 0.0978 0.4912 ± 0.2000 0.8826 ± 0.0250 0.7158 ± 0.1059 0.8835 ± 0.0118

Table 12: Comparison of the loss supervision with or w/o mutual information loss (MIL).
Class DOHSC (Non-MIL) DOHSC DO2HSC (Non-MIL) DO2HSC

MUTAG 0 0.9456 ± 0.0189 0.8822 ± 0.0432 0.8308 ± 0.0548 0.9089 ± 0.0609
1 0.7597 ± 0.0802 0.8115 ±0.0279 0.7915 ± 0.0274 0.8250 ± 0.0790

COX2 0 0.6349 ± 0.0466 0.6263 ± 0.0333 0.6143 ± 0.0302 0.6329 ± 0.0292
1 0.6231 ± 0.0501 0.6805 ± 0.0168 0.6576 ± 0.1830 0.6923 ± 0.0433

ER MD 0 0.5837 ± 0.0778 0.6620 ± 0.0308 0.5836 ± 0.0909 0.6867 ± 0.0226
1 0.6465 ± 0.0600 0.5184 ± 0.0793 0.7424 ± 0.0385 0.7351 ± 0.0159

DD 0 0.4738 ± 0.0412 0.7083 ± 0.0188 0.6882 ± 0.0221 0.7320 ± 0.0194
1 0.7197 ± 0.0185 0.7579 ± 0.0154 0.7376 ± 0.0244 0.7651 ± 0.0317

IMDB-Binary 0 0.5666 ± 0.0810 0.6609 ± 0.0033 0.6303 ± 0.0538 0.7547 ± 0.0390
1 0.6827 ± 0.0239 0.7705 ± 0.0045 0.6810 ± 0.0276 0.7737 ± 0.0503

COLLAB
0 0.9330 ± 0.0539 0.9185 ± 0.0455 0.5415 ± 0.0182 0.9390 ± 0.0025
1 0.9744 ± 0.0017 0.9755 ± 0.0030 0.9293 ± 0.0023 0.9836 ± 0.0115
2 0.8275 ± 0.0765 0.8826 ± 0.0250 0.8452 ± 0.0243 0.8835 ± 0.0118

To demonstrate the effectiveness of the orthogonal projection layer (OPL), we conducted ablation
studies and compared the comparison of 3-dimensional results produced with and without the OPL.
For each model trained on a particular dataset class, we show the result without OPL on the left side,
whereas the result with OPL is displayed on the right. As Figure 14 illustrates, the OPL drastically
improves the distribution of the embeddings to be more spherical rather than elliptical. Similarly,
with the help of the OPL, the other embeddings exhibited a more compact and rounded layout.

   
 

    

    

    

    

 

      

   

 

   

    

   

   

  

 

   

 

  

 

  

          

   

 

    

 

        

   

 

   

       
   

  

 

 

 

  

 

  

 

       

 

 

 

 

   
 

    

    

    

    

 

      

   

 

   

    

 

 

 

 

  

  

   

  

 

  

  
  

 

   

   

   

  

 

 

  

  

  

      
           

   

    

    

    

    

 

   

   

   

   

     
        

   

    

   

    

 

   

   

 

   

   

 

   

    

        

 

 

 

 

  

  

   

  

 

  

  
  

 

  

 

 

 

  

 

  

 

       

 

 

 

 

(a) DOHSC

(a) DOHSC

(b) DO2HSC

(b) DO2HSC

MUTAG 1

MUTAG 0

Figure 14: Visualizations on the MUTAG dataset Class 0 (left: without OPL; right: with OPL).

L IMBALANCED EXPERIMENTAL RESULTS

We also give the experiment on graph-level datasets with an imbalanced setting of the ratio between
anomalies and normal graphs in the experimental datasets. Please refer to Table 13, which showcases
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Figure 15: Visualizations on the MUTAG dataset Class 1 (left: without OPL; right: with OPL).
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COX2 0

COX2 1

Figure 16: Visualizations on the COX2 dataset Class 0 (left: without OPL; right: with OPL).

our results on imbalanced datasets. The experimental results illustrate that the proposed methods
overcome the imbalanced problem better than other algorithms in general. But DO2HSC has more
advantageous results.

M RELATED WORK

M.1 SOME SOTA ANOMALY DETECTION METHODS

In this section, we first provide an overview of some SOTA anomaly detection methods. The method
proposed by Perera et al. (2019) involves adversarial training of an auto-encoder and a discrimina-
tor, while compelling the latent representation by one class of data. Goyal et al. (2020) judged
the anomalous data according to the assumption that the normal instances generally lie on a low-
dimensional locally linear manifold, and regarded the process of finding the decision boundary in
the embedding space as an adversarial manner. Hu et al. (2020) combined holistic regularization
with a 2-norm instance-level normalization, thus further proposing an effective one-class learning
method. Cai & Fan (2022) proposed a perturbation learning based anomaly detection method, which
generates the negative samples containing the smallest noise as much as possible, to train a detec-
tion classifier. The assumption is that, if this classifier can discriminate this type of negative samples
and normal data, it should have the ability to distinguish more different anomalous data. All afore-
mentioned algorithms are compared in our experimental section to support the effectiveness of the
proposed improvements.
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Figure 17: Visualizations on the COX2 dataset Class 1 (left: without OPL; right: with OPL).
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Table 13: Average AUCs with standard deviation (10 trials) of imbalanced experiments (the ratio of
normal data to abnormal data is 10:1). ‘DSVDD’ stands for ‘Deep SVDD’. The best two results are
highlighted in bold and ’–’ means out of memory.

COX2 ER MD MUTAG
0 1 0 1 0 1

SP+OCSVM 0.4854 ± 0.0000 0.7874 ± 0.0000 0.2814 ± 0.0000 0.0764 ± 0.0000 0.2917± 0.0000 0.0266 ± 0.0000
WL+OCSVM 0.4127 ± 0.0000 0.8125 ± 0.0000 0.5142 ± 0.0000 0.1909 ± 0.0000 0.7083 ± 0.0000 0.0399 ± 0.0000
NH+OCSVM 0.3818 ± 0.0385 0.4875 ± 0.0000 0.5774 ± 0.0273 0.3215 ± 0.0274 0.1910 ± 0.0000 0.0573 ± 0.0833
RW+OCSVM – – 0.5220 ± 0.0000 0.2604 ± 0.0000 0.9166 ± 0.0000 0.2800 ± 0.0000

OCGIN 0.6373 ± 0.0276 0.5650 ± 0.2606 0.6574 ± 0.0487 0.3208 ± 0.0779 0.6333 ± 0.1261 0.7387 ± 0.1990
InfoGraph+DSVDD 0.5137 ± 0.0000 0.6150 ± 0.1594 0.5519 ± 0.1367 0.7653 ± 0.0806 0.5417 ± 0.2814 0.3787 ± 0.1049

GLocalKD 0.6465 ± 0.0066 0.7063 ± 0.1391 0.2578 ± 0.0000 0.1979 ± 0.0000 0.8958 ± 0.0335 0.9719 ± 0.0039
OCGTL 0.5394 ± 0.0340 0.6150 ± 0.0903 0.5009 ± 0.0805 0.6972 ± 0.0939 0.6792 ± 0.0914 0.9227 ± 0.0116

DOHSC 0.7784 ± 0.0639 0.8600 ± 0.0339 0.7601 ± 0.1000 0.9181 ± 0.0203 0.9583 ± 0.0373 0.9653 ± 0.0217
DO2HSC 0.7928 ± 0.0327 0.9050 ± 0.0292 0.8443 ± 0.0339 0.9375 ± 0.0669 0.9792 ± 0.0208 0.9800 ± 0.0133

M.2 GRAPH KERNELS AND GRAPH NEURAL NETWORKS

Graph kernels (Kriege et al., 2020) measure the similarity between graphs and are very useful in
many tasks involving graphs, such as graph classification. A large body of work has emerged in
the past years, including kernels based on neighborhood aggregation techniques and walks and
paths. Shervashidze et al. (2011) introduced the Weisfeiler-Lehman (WL) algorithm, a well-known
heuristic for graph isomorphism. In (Hido & Kashima, 2009), Neighborhood Hash kernel was in-
troduced, where the neighborhood aggregation function is binary arithmetic. The most influential
graph kernel for paths-based kernels is the shortest-path (SP) kernel (Borgwardt & Kriegel, 2005).
For walks-based kernels, Gärtner et al. (2003) and Kashima et al. (2003) simultaneously proposed
graph kernels based on random walks, which count the number of label sequences along walks that
two graphs have in common. These graph kernel methods have the desirable property that they do
not rely on the vector representation of data explicitly but access data only via the Gram matrix.

Another powerful and popular tool for handling graph data is the graph neural network. GNNs play
a crucial role in effectively aggregating neighbor information for each node based on the edges in
graph data. In the past decade, various improvements and enhancements for GNNs have been pro-
posed (Welling & Kipf, 2016; Hamilton et al., 2017; Xu et al., 2019; Sun et al., 2020; Wu et al.,
2023; Sun et al., 2023). GNNs can be applied to both node-level tasks and graph-level tasks. For
graph-level tasks, one fundamental problem is graph representation learning, which aims to rep-
resent each graph as a vector and often requires a readout or pooling operation. Xu et al. (2019)
showed that it is more effective to use a sum function to convert the representations of nodes of each
graph to a vector, compared to mean and max functions. Wu et al. (2023) proposed a framework
of graph learning based on kernel functions, which has a comparable or even better performance
compared to GNNs.

M.3 GRAPH-LEVEL ANOMALY DETECTION

There are few studies undertaken in graph-level anomaly detection (GAD). Existing solutions to
GAD can be categorized into two families: two-stage and end-to-end. Two-stage GAD methods
(Breunig et al., 2000; Schölkopf et al., 1999) first transform graphs into graph embeddings by graph
neural networks or into similarities between graphs by graph kernels, and then apply off-the-shelf
anomaly detectors. The drawbacks mainly include: 1) the graph feature extractor and outlier detec-
tor are independent; 2) some graph kernels produce “hand-crafted” features that are deterministic
without much space to improve. Whereas, end-to-end approaches overcome these problems by uti-
lizing deep graph learning techniques (such as graph convolutional network (Welling & Kipf, 2016)
and graph isomorphism network (Xu et al., 2019)), which learn an effective graph representation
while detecting graph anomaly (Zhao & Akoglu, 2021; Qiu et al., 2022; Ma et al., 2022).

In the past decades, regarding more end-to-end unsupervised graph-level anomaly detections, the
graph kernel measures the similarity between graphs. It regards the result as a representation non-
strictly or implicitly. However, the graph anomaly detection task associated with it usually performs
a two-stage process, which cannot maintain the quality of representation learning while learning
normal data patterns. Further concerning end-to-end models, Ma et al. (2022) proposed a global
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and local knowledge distillation method for graph-level anomaly detection, which learns rich global
and local normal pattern information by random joint distillation of graph and node representations
while needing to train two graph convolutional networks jointly at a high time cost. Zhao & Akoglu
(2021) combined the Deep Support Vector Data Description (Deep SVDD) objective function and
graph isomorphism network to learn a hypersphere of normal samples. Qiu et al. (2022) sought a
hypersphere decision boundary and optimized the representations learned by k Graph Neural Net-
works (GNN) close to the reference GNN while maximizing the differences between k GNNs, but
did not consider the relationship between the graph-level representation and node features.
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