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a b s t r a c t

Contrastive learning is widely used in deep image clustering due to its ability to learn discriminative
representations. However, some studies simply combined contrastive learning with clustering. This line
of works often ignores semantic meaningful representations and leads to suboptimal performance. In
this paper, we propose a new deep image clustering framework called Nearest Neighbor Contrastive
Clustering (NNCC), which fuses contrastive learning with neighbor relation mining. During training,
contrastive learning and neighbor relation mining are updated alternately, where the former is
conducted in the backward pass, while the latter is employed in the forward pass. Specially, we
empirically find that data augmentation is an effective technique for generating nearest neighbors
manually. A stronger data augmentation means more nearest neighbors involved for learning powerful
discriminative representations in the contrastive learning. Due to effective neighbor relation mining,
the proposed framework learns more semantic meaningful representations with contrastive learning
and obtains more accurate image clusters. Through experimental results on six image datasets, the
proposed framework defeats compared state-of-the-arts clustering methods.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Most of supervised deep learning methods require a large
mount of labeled samples, limiting their applicability in many
omputer vision applications. Unsupervised deep clustering [1–
], aims to group similar data into the same cluster entirely
ithout labels, and thus has received increasing attentions. With
he development of the Internet, thousands of unlabeled images
an be easily collected for training models. However, how to deal
ith high dimensions and large-scale variance features of the

arge scale unlabeled images is still a challenging problem.
To address these problems, many researchers have been de-

oted to learning desired representations for image clustering.
ood representations should be compact, retaining more in-
ormation from images, and even independent on downstream
asks [4]. Traditional methods often used hand-crafted features,
uch as HOG [5] and SIFT [6]. While these hand-crafted rep-
esentations may limit their applicability in many downstream
asks. With the progress of deep learning, many studies explored
o learn desired representations with retaining more informa-
ion from images by deep neural networks. A large number
f studies [7–10] used auto-encoders to retain absolute mag-
itude of information by reconstructing the input images and
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950-7051/© 2021 Elsevier B.V. All rights reserved.
then applied K-means to the learned representations for image
clustering. Ge et al. [11] suggested that adversarial auto-encoders
might be broadly applicable. Jiang et al. [12] and Kobayashi
et al. [13] combined variational auto-encoders and clustering
methods that could achieve better performance. Unfortunately,
trivially combining auto-encoders and clustering methods often
leads to suboptimal solutions [14]. Chang et al. [15] turned to
learning discrete representations and formulated clustering prob-
lems as a binary pairwise-classification framework. Hu et al. [16]
imposed self-augmented training regularization on the repre-
sentations to learn discrete representations for image clustering.
Several recent studies [17–20] have demonstrated the effec-
tiveness in learning good representations by maximizing the
mutual information between an image and its low dimensional
representation. Wu et al. [21] proposed a deep comprehensive
correlation mining image clustering framework, which combined
the advantage of the discrete representations learning and mu-
tual information maximization. Guo et al. [22] provided a new
perspective for clustering, where distance metric learning and
clustering are integrated into a unified framework via rank-
reduced regression. According to [4], the mutual information
maximization rewritten as the deep metric loss and contrastive
learning plays an important role in learning good representations
for image clustering.

https://doi.org/10.1016/j.knosys.2021.107967
http://www.elsevier.com/locate/knosys
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Contrastive learning aims to learn discriminative represen-
tations by optimizing the contrastive loss, where the represen-
tations from the same augmentation of images are encouraged
to be closer, while other augmentations are separable. Many
deep image clustering methods based on contrastive learning
have been proposed recently. The first group of methods com-
bines contrastive learning with clustering. For example, con-
trastive clustering [23] combines the contrastive loss with the
cluster contrastive loss to learn representations and cluster as-
signments simultaneously. It decouples the instance-contrastive
and cluster-contrastive representations into two independent
subspaces. Zhan et al. [24] introduced an online deep clustering
framework, which initialized the centroids and sample labels by
conducting contrastive learning and performed an update simul-
taneously. Tao et al. [25] utilized instance discrimination and
feature decorrelation to learn clustering-friendly representations.
Tsai et al. [26] learned the semantic representations by optimizing
contrastive loss and the mixture of experts formulation. This
group of methods starts from contrastive learning, where the
cluster centroids are iteratively optimized by clustering loss. The
second group of methods [27,28] combined contrastive learn-
ing with optimal transport and utilized Sinkhorn-Knopp [29]
algorithm to obtain label assignments. The above two groups of
methods often ignore semantic meaningful representations and
lead to suboptimal performance. Taking inspiration of the foun-
dation of these nearest neighbors belonging to the same semantic
class, some works [30–34] made use of contrastive learning to
learn discriminative representations, mined the nearest neigh-
bors on the learning representations, and finally leveraged the
nearest neighbors to discover semantic meaningful clusters.

In this paper, we propose an effective deep image cluster-
ing framework called Nearest Neighbor Contrastive Clustering
(NNCC), which fuses contrastive learning and neighbor relation
mining. The popularity of nearest neighbor relation mining from
the image pairs stems from the fact that it is a sufficient statistic
to discover semantic meaningful representations. The semantic
relations of the high dimensional image pairs may be impervious
to this as they rely on neighbor relations rather than pairwise
distances. The proposal framework uses hierarchical semantic
meaningful representations directly for discovering the clusters.
We introduce two kinds of nearest neighbor relation mining
methods. The first utilizes data augmentations on the input im-
ages to generate nearest neighbors manually, while the second
is to mine the nearest neighbors on the embedding representa-
tions via contrastive learning. During training, contrastive learn-
ing and neighbor relation mining are updated alternately, where
neighbor relation mining is conducted in the forward pass, and
contrastive learning in the backward pass. A key idea behind
the proposed framework is that the learned discriminative rep-
resentations from contrastive learning are beneficial to neighbor
relation mining which provides supervisory signals to learn more
semantic meaningful representations with contrastive learning.
By this neighbor relation, our framework can learn more semantic
meaningful representations with contrastive learning and obtain
more accurate image clusters.

The framework is illustrated in Fig. 1. The input images and
its multiple data augmentations are fed into CNN backbones to
extract normalized representations. Then, we obtain a semantic
meaningful small set of clusters by mining nearest neighbor rela-
tions. The proposed method is optimized by a new contrastive
loss fusion from the nearest neighbor relations to learn well-
clustered and semantic meaningful representations. The proposed
framework outperforms other competitors by a large margin and
obtains superior clustering performances. To sum up, the main
contributions of this paper are summarized as follows:
2

(1). Propose a deep image clustering framework by fusing con-
trastive learning and neighbor relation mining.

(2). Empirically find that data augmentation is an effective
technique for generating nearest neighbors manually.

(3). Experimental results demonstrate the effectiveness of the
proposed framework.

The remainder of this paper is organized as follows. First, we
provide a brief summary of the deep image clustering and the
contrastive learning in Section 2. Secondly, we present a new
deep image clustering framework by fusing contrastive learning
with first neighbor relation mining in Section 3. Experimental
results on several popular image datasets and performance com-
parisons are presented in Section 4. Finally, we conclude this
paper in Section 5.

2. Related work

In this section, we provide a brief summary of the deep image
clustering and contrastive learning.

2.1. Deep image clustering

Deep image clustering is one of the most important issues
in computer vision and machine learning. Most studies aim at
applying deep convolutional networks to learning visual features
for image clustering. Chang et al. [15] utilized VGG variant net-
work [35] with the constraint layer to learn indicator features.
Caron et al. [36] considered GoogLeNet architecture [37], a 22-
layer deep network with each layer having 4 parallel convolution
layers. Caron et al. [38] and Wu et al. [21] used a standard
AlexNet [39] architecture with batch normalization to learn visual
features. Ji et al. [14] adopted two ConvNets architectures for
image feature learning including ResNet [40] and VGG [35]. To
learn well-clustered representations, many prior works focused
on combining clustering and representation learning in a single
framework. Hsu et al. [41] proposed CCNN that jointly learned
cluster centers and visual representation which concatenated
multiple convolutional layers from AlexNet.

2.2. Contrastive learning

Contrastive learning [42–44] is an effective representation
learning framework by optimizing contrastive loss, which has
attracted more and more attentions recently. Let X = [x1, x2, . . . ,
xn] be the unlabeled image dataset. We use Z = [z1, z2, . . . , zn]
o denote the learned discriminative representation from deep
eural network fθ by contrastive learning. Formally, we randomly
ampleM images {xi}Mi=1, and generate a pair of augmentations for
ach image in a mini-batch, yielding an augmented batch Ba with

size 2M , denoted as Ba
= {xi, xai }

M
i=1. The contrastive loss of xi is

defined as [43]

ℓi = − log
exp(sim(zi, zai )/τ )∑M

j=1 1j̸=i · exp(sim(zi, zj)/τ ) +
∑M

j=1 exp(sim(zi, zaj )/τ )
,

(1)

where sim(·) denotes the cosine similarity between a pair of
normalized representations as follows

sim(zi, zj) = zTi zj/
(
∥zi∥ ∥zj∥

)
. (2)

For each mini-batch inputs, {zi, zai } is referred as a positive
pair, while treating the other 2M − 2 examples in Ba as negative
instances regarding this positive pair. The main challenge is to de-
sign an effective mechanism to maintain the proper positive and



C. Xu, R. Lin, J. Cai et al. Knowledge-Based Systems 238 (2022) 107967

n

Fig. 1. The network architecture of the proposed method NNCC. The input images X and its multiple data augmentations are fed into CNN backbone to extract
ormalized representation Z . We obtain a semantic meaningful small set of clusters (y1 and y2) by mining nearest neighbor relations. NNCC is optimized by a new

contrastive loss fusion from the nearest neighbor relations to learn well-clustered and semantic meaningful representations.
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negative samples. Many studies impose multiple data augmenta-
tions on the input images and regard the related augmentation
image as positive while all other augmentation images as neg-
ative samples. However, the mechanism is simple and loose,
and thus unable to reflect the semantic similarity between the
positive and related negative samples from other augmentation
images. Li et al. [45] took inspiration from metric learning, and
applied conditional noisy contrastive estimation to mining semi-
hard negative samples. Chen et al. [46] revealed the similarities
between the input images and the positive from other negative
samples, and exploited the consistency regularization on the two
similarities. Some methods [47] maintained pseudo-labels of all
images using K-means, and sampled contrastive pairs from the
memory bank. To avoid the problem of high sensitivity to the
choice of augmentations, Li et al. [45] learned the representation
from a mix-up of positive and negative images.

2.3. Clustering by neighbor mining

Using neighbor relation information is a simple yet appeal-
ing method for image clustering. It relies on the assumption
of locally constant class conditional probabilities [48] and the
empirical study that these nearest neighbors always belong to the
same class. Yang et al. [49] constructed a neighbor graph by the
similarities of each image and the cluster label could be well pre-
dicted by its neighbor relations. Huang et al. [32,34] introduced a
curriculum learning method for incrementally discovering more
accurate neighbor relations for supervision.

It is difficult and error-prone to directly mine nearest neigh-
bors in a high dimensional image data. This assumption becomes
less appealing due to the curse of dimensionality. For this pur-
pose, the choice of representation learning methods becomes
crucial. Van et al. [30] leveraged the advantages of both con-
trastive learning and nearest neighbor mining. Dang et al. [31]
adopted the neighbor relationships that existed in both local
batch learning and global learning. The semantic relations of the
high dimensional image pairs may be impervious as they rely on
neighbor relations rather than pairwise distances. To this end, we
just use the nearest neighbor relations to prevent the proposed
method from error-propagation. The contrastive learning and
global neighbor relation mining are updated alternately.

3. Proposed method

In this section, we introduce a new deep image clustering
framework called, which fuses contrastive learning and neighbor
relation mining.
 t

3

3.1. Problem formulation

We randomly sample M images and generate a related aug-
mentation in a mini-batch, denoted as {xi, xai }

M
i=1, yielding an

augmented batch with size 2M . We denote the discriminative
representations Z = {zj}2Mj=1 in a mini-batch, where zj = fθ (xj)
nd zM+i = fθ (xai ). Let Ω i

p = {M + i} denote all positive instances
of xi, and Ω i

n = {j|j ̸= i and j ̸= M + i and j ∈ [1, 2M]} denote
ll negative instances of xi. There are only one positive instance
n Ω i

p, and 2M −2 negative instances in Ω i
n. Specifically, we have

he following positive similarity, defined as:
i
p = sim(zi, zj) j ∈ Ω i

p, (3)

nd the following negative similarity, defined as:
i
n = sim(zi, zj) j ∈ Ω i

n, (4)

he objective of contrastive loss is to learn a mapping function fθ
hat makes positive pairs close to one another and negative pairs
ar apart. For the purpose of derivation, the contrastive loss can
e written as follows

i = − log
exp(sim(zi, zai )/τ )∑M

j=1 1j̸=i · exp(sim(zi, zj)/τ ) +
∑M

j=1 exp(sim(zi, zaj )/τ )

= − log
exp(sim(zi, zM+i)/τ )∑M

j=1 1j̸=i · exp(sim(zi, zj)/τ ) +
∑M

j=1 exp(sim(zi, zM+i)/τ )

= − log
exp(sim(zi, zM+i)/τ )∑2M

j=1 1j̸=i · exp(sim(zi, zj)/τ )

= − log

∑
k∈Ω i

p
exp

(
skp/τ

)
∑

k∈Ω i
p
exp

(
skp/τ

)
+

∑
j∈Ω i

n
exp

(
sjn/τ

) . (5)

he contrastive loss is then averaged over all instances in a
ini-batch

INS(θ ) =

2M∑
i=1

ℓi. (6)

inimizing Eq. (6) requires maximizing the similarity between
he original image and its augmentations as positive pairs, and
inimizing the similarity with other instances as negative pairs
ithin the batch. So we are able to learn the network param-
ters θ by minimizing Eq. (6). The object loss function can be
inimized by stochastic gradient descent with only mini-batch

nput images. However, contrastive loss hardly takes into consid-
ration the semantic sample relationships that exist in represen-
ations. The popularity of nearest neighbor relation mining stems
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rom the fact that it is a sufficient statistic to discover semantic
eaningful representations.
The goal of the proposed framework is to learn well-clustered

nd semantic meaningful representations in an unsupervised
anner and then employ K-means on the learned representa-

ions. We introduce two kinds of nearest neighbor relation mining
ethods in the following subsections. The first utilizes data
ugmentations on the input images to generate nearest neighbors
anually. The second is to obtain a semantic meaningful small
et of clusters from nearest neighbor relations on the represen-
ations, and the semantic clusters provide supervisory signals to
ontrastive learning.

.2. Neighbor relation mining manually by data augmentation

Data augmentation has been widely used in unsupervised vi-
ual representation learning. Data augmentation is able to create
upervised signals automatically by exploiting the local invari-
nce of visual representations from the unlabeled images. Data
ugmentation produces input images with diversity while prefer-
ing visual representations to be invariant. The proposed method
s guided by the multiple data augmentations to mine nearest
eighbor relation manually on the embedded vector space. We
irst consider an input image in a mini-batch for anchor selection
nd T data augmentations for each input image. Therefore, there
re T positive pairs in a mini-batch Ω i

p = {t ∗ M + i|t ∈ [1, T ]},
and T (M − 2) negative instances in Ω i

n = {j|j ̸= i and j ̸=

(tM + i) and j ∈ [1, (t + 1)M] and t ∈ [1, T ]}. The contrastive
loss is then averaged over all instances in a mini-batch, redefined
as

LINS(θ ) =

KM∑
i=1

ℓi. (7)

3.3. Clustering using nearest neighbor relation

As can be seen from Eq. (5), minimizing the instance loss
requires increasing the number of positive instances, and decreas-
ing the number of negative instances. The regularization encour-
ages the learning representations invariant to data augmentation.
Actually, this instance loss indicates that the semantic meaningful
representations depend on nearest neighbor relations.

Motivated by FINCH [33], we are able to obtain many semantic
meaningful small sets of clusters by mining first nearest neighbor
relations on the learned representations. Given the integer indices
of the first neighbor of each zi, we define an adjacency linkage
matrix

A(i, j) =

{
1, if j = κ1

i or κ1
j = i or κ1

i = κ1
j

0, otherwise,
(8)

where κ1
i denotes the first neighbor of zi. The adjacency matrix

specifies all first nearest neighbor relations.
From the adjacency matrix, we obtain a semantic meaning-

ful small set of clusters from nearest neighbor relations in the
representation in only a few recursions without relying on any
threshold or distance value as edge weights. Furthermore, we can
discover all the neighbor relations of zi, defined as NN(i) from the
adjacency matrix:

NN(i) = {k | if (A(i, k) = 1) and k ∈ [1,N]}. (9)

Therefore, the positive pair set is defined as follow:

Ω i
p = {t ∗ M + i|t ∈ [1, T ]}

∪ {t ∗ M + k|t ∈ [1, T ] and k ∈ [1,M] and k ∈ NN(i)}. (10)
4

For simplicity, the negative instances set is given as follow:

Ω i
n = {j|j ̸= i and j /∈ Ω i

p}. (11)

During training, contrastive learning and neighbor relation
mining are updated alternately. A key idea behind this frame-
work is that the learned discriminative representations from con-
trastive learning are beneficial to neighbor relation mining and
thus provide supervisory signals with contrastive learning. Now
the key problem is how to effectively estimate the contrastive
loss with the positive and the negative pairs. This problem will
be solved in the next section.

3.4. Implementation details

In this section, we will introduce how to optimize the pro-
posed framework. The proposed framework is able to be trained
in a mini-batch way. At each batch, M randomly selects images
and T corresponding augmented samples are fed into CNN to
obtain clustered representations. Each image has the positive
samples and the negative instances. After training, we employ K-
means on the learned representations to assign final clustering
labels. The proposed training process is easy to implement and
also resolves the high computational complexity. In a summary,
we show the overall training procedure of the proposed NNCC
framework in Algorithm 1.

4. Experiments

In this section, we examine the effectiveness of NNCC by
two popular metrics against other state-of-the-art deep clustering
methods. Then, we adopt the classification task on Cifar10 and Ci-
far100 datasets to analyze the quality of learned representations.
Finally, we conduct more ablation studies on Cifar10 dataset by
choosing data augmentation and cluster numbers.

4.1. Datasets

We conduct experiments on five standard datasets for deep
clustering learning: Cifar10, Cifar100, STL10, ImageNet-Dog-15,
and Tiny-ImageNet-200. The statistics of the image datasets are
summarized in Table 1 and a short description of the image
datasets is provided below.
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able 1
brief statistic of all test datasets.
ID dataset # Train # Test # classes # Image size

1 Cifar10 50,000 10,000 10 32 ∗ 32 ∗ 3
2 Cifar100 50,000 10,000 100 32 ∗ 32 ∗ 3
3 STL10 13,000 – 10 96 ∗ 96 ∗ 3
4 ImageNet-Dog-15 19,500 – 15 96 ∗ 96 ∗ 3
5 Tiny-ImageNet-200 100,000 – 200 64 ∗ 64 ∗ 3
6 ImageNet-10 13,000 – 10 96 ∗ 96 ∗ 3

1. Cifar101 consists of 60,000 RGB images with size 32 ∗ 32
from 10 classes. It is divided into two subsets: training
dataset with 50,000 samples and test dataset with 10,000
samples. Each class has 5,000 training images and 1000
testing images.

2. Cifar100 contains 60,000 RGB images with size

32 ∗ 32

from 100 classes. Just like Cifar10, it is divided into two
subsets: training dataset with 50,000 samples and test
dataset with 10,000 samples. Each class has 500 train-
ing images and 100 testing images. The 100 classes are
grouped into 20 superclasses. In our experiments, we only
consider the 20 superclasses.

3. STL10 is comprised of 13,000 labeled images with 10
classes for unsupervised feature learning. The 10 classes
include airplane, bird, car, cat, deer, dog, horse, monkey,
ship, truck. Each class has 500 training images and 800
testing images. In our experiments, we cluster training and
testing images simultaneously. All images are colorful with
size 96 ∗ 96.

4. ImageNet-dog-15 is composed of 19,500 dog images from
the ImageNet. There are 15 classes including Maltese dog,
chrysanthemum dog, Old English sheepdog, Shetland
sheepdog, German shepherd dog, Greater Swiss Mountain
dog, Bernese mountain dog, French bulldog, Eskimo dog,
carriage dog, monkey dog, pug-dog, Newfoundland dog,
African hunting dog, dogsled. There are about 1000 images
per class. We simply resize all the images to a size of
96 ∗ 96 ∗ 3.

5. Tiny-ImageNet-2002 is constituted of 100,000 color im-
ages from the ImageNet. This dataset has 200 classes and
500 image per class. We simply resize all the images to a
size of 64 ∗ 64.

6. ImageNet-10 is formed of 13,000 color images from the
ImageNet. There are 10 classes including eastern grey
squirrel, Yorkshire terrier, vizsla, rodent, water nymph,
falcon, Rhodesian ridgeback, lichen, redberry, English set-
ter. There are about 1300 images per class. Similar with
ImageNet-dog-15, we simply resize all the images to a size
of 96 ∗ 96 ∗ 3.

.2. Evaluation metrics

The goal of clustering is to ensure that intra-class images are
imilar and inter-class images are dissimilar. In our experiments,
e utilize two clustering metrics named accuracy (ACC) and
ormalized mutual information (NMI) to evaluate the effective-
ess of the proposed framework. The two evaluation metrics are
omplementary to some extent. Clustering accuracy is a simple

1 http://www.cs.toronto.edu/~kriz/cifar.html.
2 http://tiny-imagenet.herokuapp.com/.
5

and transparent evaluation measure, while normalized mutual
information can be information-theoretically interpreted.

Clustering accuracy is defined as follows:

acc(l, C) = max
M

∑n
i=1 1 {li = M (ci)}

n
(12)

here li denotes the ground-truth labels, ci denotes the predictive
cluster assignment, and M(.) denotes the Hungarian mapping
algorithm.

Normalized mutual information is given by:

nmi(l, C) =
2 × I(l; C)
H(l) + H(C)

(13)

here I(l; C) denotes MI of l and C , and H(·) denotes the entropy
f ground-truth labels. It is worth pointing out that the number
f predictive classes is set as that of ground-truth classes.

.3. Model comparison

Several deep clustering methods are used for performance
omparison. The compared methods include the classical cluster-
ng method K-means. To demonstrate the effectiveness of deep
eural networks, we employ DEC [8], DAC [50], and JULE [51]
hich combines deep auto-encoders and K-means. To evaluate
he reliability of contrastive learning and nearest neighbor rela-
ion mining, we also compare NNCC with AND [34], PAD [32] and
ICA [52] for a comprehensive comparison.

.4. Experimental setup

In the experiments, we adopt ResNet18 network as the back-
one to extract features, and the visual feature dimension is set
o 128. For each mini-batch, we randomly choose five kinds of
ata augmentation methods, including RandomResizedCrop, Col-
rJitter, RandomGrayscale, RandomHorizontalFlip, and Gaussian
lur. Specifically, Gaussian blur augmentation performs the same
perations as SimCLR [43]. Following the strategy introduced
n Section 3.2, we set the augmentation number as T = 9.
uring the training phase, the batch size, the learning rate, and
he weight decay parameter are set to 128, 0.03, and 10−4 on
ll datasets, respectively. We use SGD optimizer to train the
roposed framework. Moreover, the temperature is fixed as 0.1.

.5. Quantitative results

In this section, we perform experiments to compare the NNCC
ith other state-of-the-art clustering methods on six image
atasets. Table 2 shows the numerical experimental results. Ex-
erimental results of other compared methods are directly copied
rom DCCM [21]. As is shown, all compared models outperform
-means method on the experimental datasets. This explains
hat deep neural networks are useful to learn well-clustered
epresentations. It can also be seen that IIC and DCCM outperform
AC, DEC, and JULE on all image datasets. It implies that mutual
nformation maximization based augmentation operation is ben-
ficial to the clustering performance. Furthermore, the proposed
ramework significantly outperforms IIC, DCCM, AND, and PAD on
ll experimental datasets. On the Cifar10 dataset, the clustering
CC is 0.819, near 16% higher than 0.696 of PICA. This result
lso suggests that the proposed framework is able to effectively
earn well-clustered and semantic meaningful representations
y fusing contrastive learning with neighbor relation mining.
his result also demonstrates the effectiveness of our proposed
ramework.

We then perform experiments to show predicted cluster sam-
les on STL10 datasets. Fig. 2 shows ten predicted clusters of

http://www.cs.toronto.edu/~kriz/cifar.html
http://tiny-imagenet.herokuapp.com/
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Fig. 2. Ten predicted cluster results of some examples of STL10 using NNCC. Each row contains randomly sampled images in the same predicted cluster. The first 4
results are correct and the last 4 results marked in red are incorrect.
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Table 2
Performance comparison in terms of ACC and NMI. The best results are
highlighted in bold. The mark ‘‘–’’ denotes that the result is unavailable from
the paper or the code.
Dataset Cifar10 Cifar100 STL10

Metric ACC NMI ACC NMI ACC NMI

K-means 0.229 0.087 0.0.130 0.084 0.192 0.125
JULE 0.272 0.192 0.137 0.103 0.277 0.182
DEC 0.301 0.257 0.185 0.136 0.359 0.276
DAC 0.533 0.396 0.238 0.185 0.470 0.366
IIC 0.617 – 0.257 – 0.596 –
DCCM 0.623 0.496 0.327 0.285 0.482 0.376
AND 0.654 0.546 0.315 0.289 0.584 0.587
PAD 0.622 0.511 0.286 0.263 0.559 0.533
PICA 0.696 0.591 0.337 0.310 0.713 0.611
NNCC 0.819 0.737 0.438 0.421 0.725 0.616

Dataset ImageNet-Dog-15 Tiny-ImageNet-200 ImageNet-10

Metric ACC NMI ACC NMI ACC NMI

K-means 0.105 0.055 0.025 0.065 0.209 0.098
JULE 0.138 0.054 0.033 0.113 0.265 0.134
DEC 0.195 0.122 0.037 0.115 0.293 0.162
DAC 0.275 0.219 0.066 0.190 0.400 0.312
IIC 0.396 0.338 0.347 0.163 0.556 0.512
DCCM 0.383 0.321 0.108 0.224 0.613 0.528
AND 0.314 0.312 0.093 0.213 0.673 0.613
PAD 0.336 0.327 0.098 0.256 0.654 0.578
PICA 0.352 0.352 0.098 0.277 0.870 0.802
NNCC 0.401 0.372 0.141 0.333 0.751 0.683

the STL10 dataset using NNCC. Each class has four correct and
four incorrect samples. We observe that although the four wrong
samples are mis-clustered, but they are very similar to the correct
6

samples. For example, airplanes are always mistaken as bird,
cars, trucks and ships are very similar. These experiments suggest
that the proposed framework successfully captures the seman-
tic meaningful representations for clustering in an unsupervised
manner.

In Fig. 3, we also visualize the learned representations of NNCC
on the Cifar10 dataset. We randomly select 10,000 samples from
the learned representation and map the learned representations
onto a 2-dimensional space by t-SNE [53]. We only show the
result from the epoch number in [0, 50, 100, 200, 300, 420]. We
bserve that with the increase of epochs, the clusters are becom-
ng more and more separated. It demonstrates that NNCC tends
o progressively learn more well-clustered representations.

.6. Ablation study

In this section, we conduct experiments to make empirical
nalysis on the relation between the parameters and clustering
erformance.
Influence of augmentation operation numbers. To analyze

he clustering performance sensitivity of augmentation opera-
ion numbers, we perform experiments on the Cifar10 dataset
ollowing the settings in Section 4.4. We vary the augmenta-
ion operation parameter in [1, 2, . . . , 9]. In Fig. 4, we show
he influence of augmentation operation numbers to clustering
erformance. As the augmentation operation number increases,
he ACC and NMI also improve significantly. This is mainly due
o invariant visual features from the multiple augmentation op-
rations. Especially, data augmentation is an effective technique
or generating nearest neighbors manually. More data augmenta-
ions mean more neighbors at each epoch. It also suggests that
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Fig. 3. Visualizations of the learned representations of NNCC for different epochs on Cifar10 dataset using t-SNE. Note that the visualization is generated by randomly
electing 10,000 samples from the learned representation. Different colors correspond to different ground-truth classes. ACC at the corresponding epoch is reported
n the bracket.
Fig. 4. ACC and NMI on the Cifar10 with regard to the varying hyper parameter augmentation number.
able 3
CC and NMI on the Cifar10 with regard to different nearest neighbor relation
ining methods.
Method ACC NMI

Pretext [43] + K-means 0.659 0.598
w/o augmentations 0.698 0.613
w/o FINCH 0.809 0.718
NNCC 0.819 0.737

this is important to consider multiple neighbor relation in the
contrastive loss.

Influence of nearest neighbor relation mining. We assess
he effect of different nearest neighbor relation mining methods
nd provide the results in Table 3. According to the presented
esults, we find that all models with neighbor relation outperform
retext [43] method on the Cifar10 dataset. This explains that
eighbor relations are useful to learn well-clustered and semantic
eaningful representations. For the results without augmenta-

ions, we can find that cluster performance is only a small im-
rovement. For the results without FINCH, it implies that data
ugmentations play a vital role in neighbor relation mining and
btain performance improvement significantly. This is because
ata augmentations can find more nearest neighbors than FINCH
n each epoch. The final result shows that the proposed model
an make full use of the advantages of the two nearest neighbor
elation mining methods, rather than either one. By integrat-
ng two methods into a unified model and optimizing it with
ontrastive loss, we can obtain not only more well-clustered
7

and semantic meaningful representations, but also more accurate
image clusters.

5. Conclusion

Prior studies in image clustering have demonstrated the effec-
tiveness of favorable representation in improving performance.
However, these studies are unable to learn representations in
which similar images are preserved to be close and dissimilar
images far away. We find that contrastive learning is able to learn
well-clustered representations by maximizing the similarity of
the positive pairs and minimizing the similarity of the negative
pairs simultaneously. In this paper, we propose a new deep image
clustering framework by fusing contrastive learning with neigh-
bor relation mining. During training, contrastive learning and
neighbor relation mining are updated alternately: neighbor rela-
tion mining is conducted in the forward pass, while contrastive
learning in the backward pass. We also impose multiple data
augmentations on the input images to generate nearest neighbors
manually and optimize the framework by contrastive loss. Our
experimental results provide an evidence for the proposed deep
image clustering framework. Moreover, the experimental results
show that the proposed framework outperforms other competi-
tors by a large margin and obtains superior clustering perfor-
mances. Future study of neighbor relation mining may therefore
include data augmentation techniques that produce a high di-
versity of augmented images, and integrate existing contrastive
clustering framework easily.
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