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An Overview of Unsupervised Deep Feature
Representation for Text Categorization

Shiping Wang , Jinyu Cai, Qihao Lin, and Wenzhong Guo

Abstract— High-dimensional features are extensively accessible
in machine learning and computer vision areas. How to learn
an efficient feature representation for specific learning tasks is
invariably a crucial issue. Due to the absence of class label
information, unsupervised feature representation is exceedingly
challenging. In the last decade, deep learning has captured
growing attention from researchers in a broad range of areas.
Most of the deep learning methods are supervised, which is
required to be fed with a large amount of accurately labeled
data points. Nevertheless, acquiring sufficient accurately labeled
data is unaffordable in numerous real-world applications, which
is suggestive of the needs of unsupervised learning. Toward this
end, quite a few unsupervised feature representation approaches
based on deep learning have been proposed in recent years. In this
paper, we attempt to provide a comprehensive overview of unsu-
pervised deep learning methods and compare their performances
in text categorization. Our survey starts with the autoencoder
and its representative variants, including sparse autoencoder,
stacked autoencoder, contractive autoencoder, denoising autoen-
coder, variational autoencoder, graph autoencoder, convolutional
autoencoder, adversarial autoencoder, and residual autoencoder.
Aside from autoencoders, deconvolutional networks, restricted
Boltzmann machines, and deep belief nets are introduced. Then,
the reviewed unsupervised feature representation methods are
compared in terms of text clustering. Extensive experiments in
eight publicly available data sets of text documents are conducted
to provide a fair test bed for the compared methods.

Index Terms— Autoencoder, deconvolutional network, deep
belief nets, deep learning, feature representation, text catego-
rization, unsupervised learning.

I. INTRODUCTION

W ITH the development of Internet and multimedia tech-
nology, the amount of data comes with a rapid and

steady growth, which contains a great deal of redundant,
irrelevant, and inconsistent data. These undesired data may
largely deteriorate the performance of specific learning tasks.
Consequently, how to learn an efficient feature representation
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from massive data is extremely critical and urgent. It is known
that an effective feature representation comes with satisfac-
tory effects of learning tasks [1], [2]. Feature representation
can be categorized as supervised or unsupervised methods.
In supervised learning, it is about finding a low-dimensional
representation by a trained model with a set of known class
labels [3]–[5]. In contrast, unsupervised methods attempt to
construct a feature representation by the evaluation of sample
similarities [6]–[8].

The concept of deep learning was put forward by
Hinton et al. [9] and Hinton and Salakhutdinov [10], and it
has made persistent advances in recent years [11]–[14]. It is
actually a multilayered neural network to simulate and analyze
the operation mechanism of human brains. In such a scheme,
deep learning attempts to represent, decode, and interpret all
kinds of data, including images [15]–[18], sounds [19]–[21],
texts [22]–[24], and videos [25]–[28]. Like other machine
learning methods, deep learning can also be categorized as
supervised and unsupervised approaches. As an example,
convolutional neural networks [29]–[31] are supervised deep
learning models, while deep belief nets tend to work in
unsupervised scenes [32]–[34].

In contrast, shallow neural networks come with a smaller
number of layers (below three layers) [35], [36]. This type of
networks possesses favorable performances in some specific
applications, especially for the cases of insufficient training
data [37], [38]. However, the limitations of shallow neural
networks are the weak approximation ability and generaliza-
tion capacity of complex data distributions [39]. Conversely,
deep neural networks consist of a large number of hidden
layers, which are able to provide well-approximated solutions
to varying complex functions [40], [41]. In other words, some
complex nonlinear functions are expressible by deep neural
networks but cannot be well approximated by any shallow
neural network with the same number of neurons [42]. From a
theoretic viewpoint, the former works with the lower bound of
approximation performance. Simultaneously, deep nets exhibit
considerable merits in learning hierarchical semantic feature
representations, such as learning parts of objects [43], [44].
The semantic features act frequently as high-level characteri-
zations of visual objects [45], [46].

Nonetheless, a variety of practical applications frequently
suffer from the lack of sufficient accurately labeled data.
Naturally, learning beneficial patterns and feature represen-
tations from this type of data is of great importance. Toward
this end, there have been a number of unsupervised learning
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paradigms, such as autoencoder networks [47]–[50], restricted
Boltzmann machines (RBMs) [51]–[54], deconvolutional net-
works [55]–[58], and deep belief nets [59]–[61]. These
methods focus more on dimensionality reduction, aiming at
providing a series of rewarding solutions to an unsupervised
learning.

In this paper, we present a comprehensive overview of
unsupervised deep feature representation methods for the
problem of text categorization. In the first place, we begin
with one widely used type of unsupervised neural networks,
namely autoencoder networks, and describe their intrinsic
mechanisms and distinguished invariants. Then, other typ-
ical representatives of unsupervised deep feature represen-
tations are introduced, including deconvolutional networks,
deep belief nets, and RBMs. Finally, numerous experiments
are conducted in eight publicly available data sets of text
documents from machine learning repositories. Extensively
experimental results demonstrate the respective benefits of
varying unsupervised deep feature representation methods. It is
expected that this paper would provide some enlightenments
and insights for who are fresh in this area.

The remaining part of this paper is arranged as fol-
lows. A number of unsupervised deep feature representation
approaches are presented in Section II. And the extensive com-
parative experiments of the reviewed methods are provided in
Section III. Finally, this paper is concluded with remarking
work in Section IV.

II. OVERVIEW OF UNSUPERVISED DEEP FEATURE

REPRESENTATION

To begin with, some frequently used notations are revisited
in this paper. For an unsupervised learning task, the set of
data points is denoted by {xi}ni=1, where xi ∈ R

d is a
d-dimensional column vector. The input data matrix is
assumed to be X = [x1, . . . , xn] ∈ R

d×n . For an arbitrary
matrix M = [Mi j ]m×n , its Frobenius norm (simply called

F-norm) is defined as ||M||F =
√∑n

j=1
∑m

i=1 M2
i j , and its

L1-norm is denoted as ||M||1 =∑n
j=1

∑m
i=1 |Mi j |.

This section puts more emphasis on four categories of unsu-
pervised deep feature representations, including autoencoders-
like networks, deconvolutional networks, RBMs, and deep
belief nets.

A. Autoencoder Network and its Variants

Autoencoder neural network is a well-known unsupervised
feature representation method that learns low-dimensional
hidden variables with the minimum reconstruction error to the
input matrix. In order to capture the certain geometrical struc-
tures of the input data, a number of variations of autoencoder
have emerged.

1) Autoencoder: An autoencoder neural network can be
divided into two symmetric steps: encoder and decoder. The
former aims to learn a low-dimensional feature representation
of the input data, whereas the latter is to recover the data with
the minimum reconstruction error. An encoder can be regarded
as a feedforward bottom-up step, while a decoder can be
viewed as a feedback top-down generative step. An illustration

Fig. 1. Framework of autoencoder neural network.

of autoencoder networks is demonstrated in Fig. 1. From
Fig. 1, it is observed that each data point x = [x (1); · · · ; x (d)]
in the input layer is encoded as y = [y(1); · · · ; y(r)] with
r � d in the hidden layer, which is then decoded as
x̂ = [̂x (1); · · · ; x̂ (d)] in the output layer.

The output x̂ is actually an estimator of the input sample x,
and loss(x, x̂) serves as the performance loss function. Specif-
ically, the hidden layer y represents the activated neurons
by a certain linear transformation of the input layer x. The
transformation matrix and bias from the input layer to the
hidden layer are denoted by W(1) ∈ R

d×r and b(1) ∈ R
r , and

those from the hidden layer to the output layer are denoted
by W(2) ∈ R

r×d and b(2) ∈ R
d . With the aforementioned

notation, hidden units y can be computed by the following
canonical form:

y = f (x) = hW(1),b(1)(x) = σ(W(1)T
x + b(1)) (1)

where σ is a predefined activation function, typically a logistic
sigmoid function σ(z) = (1/1+ e−z) for any z ∈ R.
Analogously, the output layer can be represented by

x̂ = g( f (x)) = hW(2),b(2) (y) = σ(W(2)T
y + b(2))

= σ(W(2)T
σ(W(1)T

x + b(1))+ b(2)) (2)

in which the activation functions in encoding and decoding
modes are assumed to be the same for model description
simplicity. The mappings f : Rd → R

r and g : Rr → R
d are

called the encoder and the decoder, respectively.
Without loss of generality, it is assumed that the encoder

and the decoder share the same weighted matrix, i.e., W(1) =
W(2)T =W and b = [b f ; bg] with b(1) = b f and b(2) = bg .
The optimization objective function of an autoencoder neural
network is defined as

min
W,b

J (W, b) =
n∑

i=1

�(xi , g( f (xi ))) =
n∑

i=1

�(xi , x̂i ) (3)

where �(·, ·) is a loss function to measure the mutual difference
between two variables and x̂i = g( f (xi )) = σ(WT σ(WT xi +
b f )+ bg). For simplicity, �(·, ·) is specified as the Euclidean
distance. Therefore, the above-mentioned optimization objec-
tive is written as

min
W,b

J (W, b) =
n∑

i=1

||xi − g( f (xi ))||22. (4)
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Algorithm 1 Algorithm for Autoencoder Neural Network
Input: Data points {xi }ni=1, the number of hidden units r , and
learning rate α.
Output: Shared weighted matrix W and bias vectors b f , bg ,
denoted by b = [b f ; bg].
1: Initialize W and b;
2: Randomly generate mini-batches {Xi }ki=1 with Xi ∈ R

d×ni

and n =∑k
j=1 n j , forming a partition of X;

3: repeat
4: for each epoch (i = 1, . . . , k) do
5: Update W with W←W− α ∂

∂W J (W, b);
6: Update b with b← b− α ∂

∂b J (W, b);
7: end for
8: until convergence
9: return W and b.

Assuming that X̂ = [̂x1, . . . , x̂n], the optimization problem
of autoencoder neural networks is then rewritten as

min
W,b

J (W, b) = ||X− g( f (X))||2F = ||X− X̂||2F (5)

with g( f (X)) = X̂ = σ(WT σ(WT X+ b f )+ bg).
The aforementioned matrix characterization for the autoen-

coder network provides a batched optimization technique.
The above-mentioned optimization problem can be solved by
the mini-batch gradient descent method, as demonstrated in
Algorithm 1.

2) Sparse Autoencoder: For certain learning tasks, most
neurons of an autoencoder neural network are not activated.
Assuming that a weighted matrix W and two bias vectors
{b(l)}2l=1 will be learned, there are d × r + d + r parameters
to be solved, where the parameter number may be greater
than the known sample number, being indicative of the high
risk of overfitting. Besides, the simplest form of autoencoders
may lead to weight-decay, suggesting that the corresponding
neurons are optimized by small weights. Sparse autoencoder
neural network is based on the assumption that only a small
number of neurons are activated [62], [63] when addressing
specific learning tasks. It requires that both weighted matri-
ces and output hidden units are constrained to be sparse.
Therefore, the optimization problem of the sparse autoencoder
neural network is formulated as

min
W,b

J (W, b)+ λ||W||1 + μ

r∑

j=1

K L(ρ|ρ̂ j ) (6)

where λ and μ are the two regularized coefficients to bal-
ance the fitting term and the sparsity term, ρ is a prede-
fined sparsity parameter, and K L(ρ|ρ̂ j ) = ρlog((ρ/ρ̂ j )) +
(1 − ρ)log((1− ρ/1− ρ̂ j )) is the Kullback–Leibler (KL)-
divergence to guarantee the sparsity of the output hidden
variables. Herein

ρ̂ j = 1

n

n∑

i=1

σ
(
wT

j X+ b(1)
j

)
xi (7)

with W = [w1, . . . , wr ] ∈ R
d×r .

Fig. 2. Illustration of stacked autoencoder neural network wherein only two
hidden layers are demonstrated.

3) Stacked Autoencoder: The aforementioned autoencoder
neural network indicates that a low-dimensional representation
Y ∈ R

r×n is available for a given data matrix X ∈ R
d×n .

However, the autoencoder network just contains one hid-
den layer, which implies weak abilities to learn a nonlinear
feature representation, though nonlinear activation function
is employed in each layer. Naturally, adding more hidden
layers is a prior choice to learn nonlinear high-level features.
A stacked autoencoder [64], [65] is to construct a network
with multiple hidden layers based on greedy strategies. The
stacked autoencoder network with m hidden layers can be
simply regarded as a combination of m autoencoders. It can
also be viewed as m pairs of encoder and decoder, as shown
in Fig. 2.

In the hidden layers, the encoding parameter from the
(l−1)th layer to the lth layer is denoted by (W(l), b(l)

f ), and its

corresponding decoding parameter is written as (W(l)T
, b(l)

g ).
Hence, the hyperparameter space of a stacked autoencoder can
be denoted as {W(l), b(l)}ml=1 with b(l) = [b(l)

f ; b(l)
g ]. With an

input data matrix X ∈ R
d×n , the mth hidden layer to be solved

can be represented as

Y = fm( fm−1 · · · ( f1(X)))

= σ
(
W(m)T · · ·σ (W(1)T

X+ b(1)
f

)+ b(m)
f

)
(8)

and the reconstructed data matrix X̂ is expressed as

X̂ = g1(g2 · · · (gm(Y)))

= σ
(
W(1)T · · · σ (W(m)T

Y+ b(m)
g

)+ b(1)
g

)
. (9)

Therefore, the overall cost loss of a stacked
autoencoder neural network is J (W, b) = ||X −
g1(g2 · · · (gm( fm( fm−1 · · · ( f1(X)))))||2F , where W �
{W(l)}ml=1 and b � {b(l)}ml=1. With a layerwise greedy
strategy, the optimization objective function of a stacked
autoencoder can be represented as

min
W,b

J (W, b) =
m∑

l=1

||Ol−1 − gl( fl(Ol−1))||2F (10)

where O0 is the input layer, i.e., O0 = X, and Ol = fl (Ol−1)
is the lth layer output for any l ∈ {1, . . . , m}.
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Fig. 3. Architecture of denoising autoencoder.

4) Contractive Autoencoder: Beyond sparsity and multilay-
ers, the robustness of the hidden variables is an indispensable
point for a neural network. Toward this end, a measure
was proposed to encourage the robustness of the learned
low-dimensional feature representation f (x). This measure is
represented as the Frobenius norm of the Jacobian matrix
J f (x) of a nonlinear mapping f [66], defined by

||J f (x)||2F =
∑

i, j

(
∂h j (x)

∂xi

)2

(11)

where h j (x) is the j th element of the low-dimensional hidden
representation h(x) encoded by f . Particularly, the Jacobian
matrix can be represented by

J f (x) =

⎡
⎢⎢⎢⎢⎣

∂h1(x)

∂x1
· · · ∂hr (x)

∂x1
...

...
∂h1(x)

∂xn
· · · ∂hr (x)

∂xn

⎤
⎥⎥⎥⎥⎦

(12)

where r is the number of hidden units. Adding a regulariza-
tion term associated with the Jacobian matrix of nonlinear
mappings, a contractive autoencoder neural network [67] is
formalized as

min
W,b

J (W, b) =
n∑

i=1

�(xi , g( f (xi )))+ λ||J f (xi )||2F (13)

where λ is a regularization parameter. By a batched matrix for-
mulation, the aforementioned optimization objective problem
is equivalently transformed into

min
W,b

J (W, b) = �(X, g( f (X)))+ λ||J f (X)||2F (14)

in which J f (X) ∈ R
n×n×r is a 3-D tensor of which the i th

entry is equal to J f (xi ) for any i ∈ {1, . . . , n}.
5) Denoising Autoencoder: Deep neural networks tend to

rely largely on accurately labeled input data, which implies
that these networks frequently fail to learn effective dis-
criminative features from partially destroyed data. Denoising
autoencoder neural network [68], [69] aims at reconstructing
clean data from given noisy data.

The architecture of denoising autoencoders is shown
in Fig. 3. It is observed from Fig. 3 that a clean input data
point x is preprocessed as corrupted x by adding an amount
of noises obeying certain probability distribution, such as
binomial noises or Gaussian noises [70]. Each corrupted data
point x is mapped onto a low-dimensional hidden represen-
tation y = hW,b(x) = σ(WT x + b f ) using an autoencoder.

Fig. 4. Illustration of variational autoencoder neural networks.

Using hidden units {yi}ni=1, we reconstruct the original input
data points {xi}ni=1, instead of the corrupted data points
{xi }ni=1. Therefore, the optimization objective function of a
denoising autoencoder neural network can be represented as

min
W,b

J (W, b) = �(X, X̂) = �(X, g( f (X))) (15)

where X̂ = σ(WT σ(WT X+b f ))+bg with X = [x1, . . . , xn].
Since x is assumed to be a random variable by adding noise
to x, �(·, ·) tends to be defined as a probability loss function,
such as cross entropy.

6) Variational Autoencoder: Given any high-dimensional
input data point, autoencoders learn a low-dimensional hid-
den representation with minimum reconstruction error. It is
observed that the learned hidden variable is closely related
to the input data matrix, indicating that it fails to gener-
ate an arbitrary sample. Hence, the hidden layer is further
constrained with certain conditions and regularizations, such
that it can produce any sample at a relatively independent
manner. Toward this end, a variational autoencoder neural
network [71], [72] provides a probabilistic view to learn
regularized hidden units.

Given an input data set {xi}ni=1 of n independent identically
distributed (i.i.d) samples from a random variable x, it is
assumed that the given data points are generated by a given
random process with an unobserved hidden random variable y.
The variational autoencoder aims to learn a hidden random
variable (also called a latent variable) y, as shown in Fig. 4.
It is observed from Fig. 4 that variational autoencoders consist
of two steps, namely a recognition model (a probabilistic
encoder) and a generative model (a probabilistic decoder).
The former serves as an encoder to learn the hidden variable
y with conditional probability qφ(y|x), while the latter acts
as a decoder to produce x̂ with a generative model pθ (̂x|y)
with minimum reconstruction loss to x. Herein, parameters
φ and θ need to be specified into certain distribution forms.
When specifying the distribution (e.g., Gaussian distribution)
that pθ (̂x|y) obeys and the estimated parameter θ , pθ (·) can
be used to generate any adversarial sample x̂.

Given an input random variable x, variational autoencoders
aim at learning a hidden random variable y, satisfying the
following two conditions: 1) the reconstruction loss �(·, ·)
should be minimized and 2) the hidden variable y should obey
a given distribution. According to Bayes’ formula, the true
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posterior density can be represented as

pθ (y|x) = pθ (x|y)pθ(y)

pθ (x)
. (16)

Naturally, the conditional distribution qφ(y|x) should be the
best estimation of the true posterior distribution pθ (x|y). The
KL-divergence is employed to measure the difference between
both distributions. Using maximum likelihood estimation,
the marginal likelihood is expressed as

log pθ (x1, . . . , xn) =
n∑

i=1

log pθ (xi ). (17)

Here, the marginal likelihood of each data point can be written
as

log pθ (xi ) = DK L(qφ(y|xi)||pθ (y|xi))+ �(φ, θ; xi) (18)

where �(φ, θ; xi) is a cost loss to be minimized, also called
the variational lower bound of on the marginal likelihood of
data point xi . Therefore, the optimization objective function
of variational autoencoders is formulated as

min
φ,θ
−DK L(qφ(y|xi)||pθ (y))+ Eqφ(y|xi )[log pθ (xi |y)] (19)

where φ and θ to be optimized are called the variational and
generative parameters, respectively. Frequently, we suppose
that the hidden variable is a centered isotropic multivariate
Gaussian, i.e., pθ (y) = N (y; 0, I), and pθ (x|y) is a multivari-
ate Gaussian for real-value data or Bernoulli for binary data.
Simultaneously, the variational posterior is assumed to be a
multivariate Gaussian with a diagonal covariance matrix, that
is

qφ(y|xi) = N (
y;μi , σ

2
i I

)
. (20)

With the aforementioned parameterization trick, a variational
autoencoder neural network is trained, and the corresponding
hidden variables are computed.

7) Graph Autoencoder: Compared with other autoencoder
variants, graph autoencoder includes both the data matrix
X ∈ R

d×n and the graph adjacency matrix A ∈ R
n×n as an

input pair [73], [74]. By encoder function f (◦), the input two
tuples (X, A) are mapped into a low-dimensional embedding
Y ∈ R

k×n with k � d , while a pairwise decoder model g(◦)
recovers A with the minimum reconstruction error [75].

In this section, we introduce a local invariant deep nonlinear
mapping algorithm, namely a graph regularized autoencoder.
With an input data matrix X ∈ R

d×n , this algorithm is to
search a feature representation Y ∈ R

k×n with an encoder
function f (◦), i.e., Y = fW,b(X, A), in which k is the number
of reduced dimensions and θ is a parameter to be solved.
Naturally, there is a decoder function g(◦) to project the hidden
units onto a reconstructed feature space, X̂ = g(Y).

From a perspective of manifold learning, the local structure
of the input feature space is preserved in the embedded low-
dimensional representation. Accordingly, the graph regularized
autoencoder aims at finding a best low-dimensional embedding
in the hidden layer. Its optimization objective problem is
defined as the form of

arg min
W,b
||X− g( f (X))||2F + λtr(YLAYT ) (21)

Algorithm 2 Algorithm for Graph Regularized Autoencoders
Require: The original data X, adjacency matrix A, the number

l of layers, and the numbers of units in the hidden layers.
Ensure: Weighted matrix W and bias vector b of each layer.
1: for i ∈ {1, . . . , n} do
2: Update W and b by solving Problem (22);
3: Obtain the i -th layer of data representation Yi ;
4: end for
5: return W and b.

where λ > 0 is suggestive of a regularization parameter of
the training algorithm and LA is a regularizer of structured
learning. In many circumstances, LA is specified as a graph
Laplacian, i.e., LA = D − A, where D is a diagonal matrix
with Dii =∑n

j=1 Ai j .
As training all layers simultaneously in multiple-layer

autoencoders may be stacked, graph regularized autoencoders
train the multilayered neural networks layer-by-layer. It is
worth pointing out that the above-mentioned optimization
problem can be rewritten as

arg min
W,b

n∑

i=1

||xi − g( f (xi ))||22 + λ

n∑

i=1

tr(yi LAyT
i ) (22)

where Y = [y1, . . . , yn].
With the aforementioned analyses, the procedure for graph

regularized autoencoders is summarized in Algorithm II.
8) Convolutional Autoencoder: A convolutional autoen-

coder is also comprised of encoding and decoding. Compared
with other invariants of autoencoder neural networks, it is dis-
tinctive in feature generation using convolutional operations,
instead of nonlinear activation functions of linear transforma-
tions.

For encoding, a convolution neural network architec-
ture [76] is used to produce feature maps, which is widely
used in image data processing. It is assumed to contain L
layers where the former L − 1 layers are convolutional, and
the Lth layer is fully connected. Here, the hidden feature
representation in the lth layer is denoted by Yl for l ∈
{1, . . . , L}. Suppose that the lth layer consists of pl feature
filters for any l ∈ {1, . . . , L}. For example, as to the i th filter
in the first layer, a convolutional operation with stride length
r produces a latent feature map

yi,1 = σ
(
X ∗Wi,1 + bi,1

f

)
(23)

where σ(·) is a specific nonlinear activation function and
∗ denotes the convolutional operator. In real-world applica-
tions, σ(·) is frequently represented by a rectified linear unit
(ReLU) [77]. Concatenating all feature maps generated by
all filters, the set of all feature maps in the lth layer is
denoted Y(l) = [y(1,l), . . . , y(pl ,l)]. For simplicity, we denote
Wl = [W1,l, . . . , Wpl ,l ] and bl

f = [b1,l
f , . . . , bpl ,l

f ]. Hence,
the aforementioned latent feature maps are formulated as the
recursive form of

Yl = σ
(
Yl−1 ∗Wl + bl

f

)
(24)
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Fig. 5. Architecture of adversarial autoencoder neural network.

where Y1 = σ(X ∗ W1 + b1
f ) and l ∈ {1, . . . , L}. As a

result, the final hidden layer YL serves as a high-level semantic
representation for learning tasks.

For decoding, the hidden low-dimensional feature represen-
tation is hierarchically reconstructed to the original feature
space. Consequently, the estimated data matrix is represented
by

X̂ � X̂L = gL(gL−1 · · · (g1(YL))) (25)

with the recursive formulation of

X̂l = σ
(
X̂l−1 ∗ Ŵl + b̂l

g

)
(26)

in which X̂1 = σ(ŶL ∗ Ŵ1 + b̂1
g) and l ∈ {1, . . . , L}. With

the formulated architecture, convolutional autoencoders are
represented as the following optimization objective function:

arg min
W,b

1

2
||X− X̂||2F (27)

where a unified framework is provided for all variants of
autoencoders.

9) Adversarial Autoencoder: Adversarial autoencoders use
an “adversarial" mechanism to learn a low-dimensional rep-
resentation. It is comprised of two main models, namely the
generation model and the discriminative model. Frequently,
it can be combined with generative adversarial networks [78],
[79] and variational autoencoders. The structure of adversarial
autoencoder networks [80] is shown in Fig. 5.

Let x be an input data point and y be a hidden unit of
an adversarial autoencoder. Let p(y) be an arbitrary prior
distribution, p(x|y) be the decoding distribution, and q(y|x)
be the encoding distribution. Meanwhile, we let p(x) be
the model distribution and pd(x) be the data distribution.
By q(y|x), we can define q(y) on a hidden encoding vector
as

q(y) =
∫

x
q(y|x)pd(x)dx. (28)

Actually, q(y) can be regarded as an aggregated posterior dis-
tribution on hidden units. An adversarial autoencoder matches
q(y) to p(y) for regularization purposes as well as adversarial
sample generators. In addition, the generator of adversarial

network is the encoder q(y|x), which guarantees that the
aggregated posterior distribution could confuse the discrim-
inative network between q(y) and p(y).

From the perspective of optimization algorithms, an adver-
sarial autoencoder could be divided into two phases in each
mini-batch training process, solved by stochastic gradient
descent (SGD). Both the phases are regarded as the reconstruc-
tion and the regularization, respectively. In the reconstruction
phase, adversarial autoencoder attempts to minimize the recon-
struction error of inputs by updating the encoding parameters
φ and θ , defined by

arg min
θ,φ
‖x − x̂‖22. (29)

There are two tasks in the regularization phase. On one hand,
the adversarial network distinguishes the true samples gener-
ated by the prior knowledge from the generated samples in
the hidden layer through updating its discriminative network.
On the other hand, it updates its generator to confuse the
discriminative network, formulated as

min
G

max
D

Ex∼pdata[logD(x)]+Ey∼p(y)[log(1−D(G(y)))] (30)

where G(◦) is the generator and D(◦) is the discriminator,
respectively. Apart from this, D(x) is a neural network to
calculate the possibility that a variable x from the data space
is a sampling from positive samples that we attempt to model
instead of negative samples. Meanwhile, G(y) is a mapping to
project sample y in the prior p(y) to the data space. The task
of G(y) is to infer the discriminative network into a trusted
mechanism, such that it generates positive samples as much
as possible in the training process. And the training is realized
by updating the gradients of D(x) with regard to x.

Concerning the selection of the encoding q(y|x), adversarial
autoencoders have several beneficial choices, such as deter-
ministic, Gaussian posterior [81], and universal approximator
posterior. This type of mechanism can generate rewarding
models when addressing specific practical scenarios. All in
all, an adversarial autoencoder aims at integrating the idea
of confrontation into autoencoders, and its merit is the usage
of modeling discrete true samples using a continuous infinite
hidden variable. In other words, sufficient training data are
generated by adversarial autoencoders, which is effective in
filling the gap that generative adversarial networks could not
produce discrete samples.

10) Residual Autoencoder: He et al. [82] proposed a resid-
ual learning framework for object recognition. The aim of
this method is not to learn unreferenced functions, instead of
residual functions about the layer inputs. Due to the multiple
downsampling operations, deep residual neural networks may
miss some beneficial details. Nevertheless, this type of neural
networks can ease the training processing and is effective
in exploiting substantially deeper networks. Let H(◦) be the
underlying function to map the original data point x into
the reconstructed unit x̃ = H(x) with the same dimension.
It is based on the assumption that any complicated nonlinear
functions could be asymptotically approximated by multi-
layered neural networks with enough layers. Naturally, it is
hypothesized that the residual function 
x � H(x)−x can be
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well approximated. Residual networks are to explicitly learn a
surrogate of the residual function 
x, rather than the mapping
H(x). Combining the weighted matrices {Wi }li=1 to be learned
with the layer number l, the residual function is then defined as

(x; {Wi}li=1). Therefore, the output vector of deep residual
neural networks is computed by y = x̃ = 
(x; {Wi}li=1)+ x,
where



(
x; {Wi }li=1

) =WT
l σ

( · · ·WT
2 σ

(
WT

1 x
))

. (31)

It is noted that the input feature vector x is assumed to have
the same dimension with the output 
(x; {Wi}li=1), which is
not necessarily true in varying practical scenarios. Toward this
end, a linear projection Ws by the shortcut connections is
performed to uniform the dimensions, with the output defined
by

y = 

(
x; {Wi}li=1

)+WT
s x. (32)

In a supervised learning, the given class label can serve as an
estimated output y = x̃, which guides the searching directions
of the optimization algorithms. Nonetheless, residual networks
are tough to address unsupervised learning tasks due to the
absence of class label information.

Residual autoencoders [83] aim at learning an efficient
low-dimensional representation in an unsupervised manner.
The residual function of an unsupervised task is defined as

x = x − x̃, where x̃ is an estimate of the input feature
vector x. Therefore, the loss function of residual autoencoders
is represented as the canonical form of

L = ‖
x −
x̂‖22 = ‖(x − x̃)− θW,b(x̃)‖22 (33)

where 
x̂ = θW,b(x̃) is the estimated output that residual
autoencoders produce. The principle of residual autoencoders
is to make 
x̂ as close to the expected output as possible.

B. Deconvolutional Network

Deconvolutional network [84] is a framework that allows
an unsupervised construction of hierarchical image represen-
tations. These feature representations are available to provide
effective features for object recognition. Each hierarchical
layer collects useful information to yield more complex rep-
resentations for midlevel and high-level feature learning [58].
Taking image data as an example, it can automatically extract
rich features that correspond to midlevel features, such as edge
junctions, parallel lines, and curves and high-level features,
such as rectangles and semantics. Compared with the convo-
lutional autoencoders, each layer in deconvolutional networks
is top-down. It manages to reconstruct the input data by a sum
over convolutions of the feature maps with the learned filters.

The architecture of deconvolutional neural networks is
shown in Fig. 6. Each deconvolutional network consists of
pairs of convolution and deconvolution operations. The former
is to generate features using convolution kernels, while the
latter aims to reconstruct the input data using feature filters.
Naturally, these two operations correspond to the encoder and
the decoder of an autoencoder neural network, respectively.

As an example of single deconvolutional network, let the
hidden variable be yi consisting of c channels yi

1, . . . , yi
c.

Fig. 6. Illustration of convolution and deconvolution.

In this network, each channel is represented as a linear sum
of latent feature maps zi

j convolved with filters W j,k , defined
by

yi
k =

c′∑

j=1

zi
j ∗W j,k (34)

where k ∈ {1, . . . , c} and c′ is the number of latent feature
maps. It is worth noting that c′ is jointly determined by the
input image size and filter size. For instance, there are (W −
h+ 1)× (H − h + 1) feature maps for an image of resolution
W×H and a filter of h×h size. Accordingly, the optimization
problem is represented by

arg min
yi

c∑

k=1

∥∥∥∥∥∥
yi

k −
c′∑

j=1

zi
j ∗W j,k

∥∥∥∥∥∥

2

2

+ λ

c′∑

j=1

∣∣zi
j

∣∣p (35)

where λ is a regularization parameter to keep a tradeoff
between the first fitting accuracy (ACC) and the second
regularization term. Besides, this regularization term is added
to provide a well-defined solution to the underdetermined
optimization problem. Then, the deconvolutional networks
assume that Gaussian noises are imposed on the reconstruction
term [85] and encourage certain properties of the learned fea-
ture maps by p-norm. As an example, λ balances the relative
contributions of the reconstruction of yi and the sparsity of
the feature maps zi

j when fixing p = 1. Finally, the model
of deconvolutional networks is top-down. It is suggested from
this network that an image is well restored when the latent
feature maps are available. Unlike sparse autoencoders or deep
belief nets, there is a tailored mechanism for feature map
generation, whose effectiveness has been validated in varying
practical applications.

C. Restricted Boltzmann Machine

A Boltzmann machine is a kind of stochastic recur-
rent neural network constructed by Ackley and Hinton [86]
in 1985. The Boltzmann machine is named from the Boltz-
mann distribution in statistical mechanics. RBM is regarded
as a special topological structure of the Boltzmann machine,
proposed by Hinton et al. [87], [88] in 1986. The term
“restricted" refers to the model constrained with the bipartite
graph, which is indicative of the disconnectivity of neurons in
the same layer. Therefore, RBMs consume less computational
resources than traditional ones [89].
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Fig. 7. Framework of RBM.

RBM has a visible layer in the input layer and a hidden
layer for feature representations [90], [91], and its architecture
is shown in Fig. 7. It is comprised of visible units and
hidden units, where the former is the input data points and
the latter corresponds to feature representations. Actually,
RBMs come with binary-valued visible and hidden variables,
aiming at modeling a probability distribution of the input data
points.

Let xi and y j be the binary states of visible neuron i and
hidden neuron j . An energy function E(x, y) of the visible
and hidden units (x, y) is formulated as

E(x, y) = −
∑

i

ai xi −
∑

j

b j y j −
∑

i

∑

j

xi y j Wi j (36)

where ai and b j are the biases and Wi j is the weighted
parameter between xi and y j . With the form of matrix
representation, the aforementioned energy function is written
as

E(x, y) = −aT x − bT y − yT Wx. (37)

Alternatively, there is another energy function E(x, y) to assign
a probability to the pair (x, y) of visible and hidden vectors,
defined by

p(x, y) = 1

Z
e−E(x,y) (38)

where Z is the partition function that is formalized by sum-
ming over all possible pairs of visible and hidden vectors, that
is

Z =
∑

x

∑
y

e−E(x,y). (39)

Besides, the marginal probability p(x) of p(x, y) with respect
to visible variable x is defined as

p(x) = 1

Z

∑
y

e−E(x,y). (40)

Since RBMs are structured with bipartite graphs, which is
suggestive of no intralayer connection in the visible or hidden
layers. Therefore, the conditional probabilities p(x|y) and
p(y|x) are written as

p(x|y) =
∏

i

p(xi |y) and p(y|x) =
∏

i

p(yi |x). (41)

In the training process, RBMs are to search the optimal W
value while maximizing the product of probabilities of a given
training set X, that is

arg max
W

∏

x∈X

p(x) (42)

which is equivalently written as

arg max
W

E

[∑

x∈X

log p(x)

]
. (43)

A widely used optimization algorithm for the above-
mentioned problem is Gibbs sampling-based gradient descent
method [92]. It is observed that E(x, y) is a quadratic form,
and hence, the derivative of the log probability of a training
vector with regard to a weight is computed by

∂ log p(x)

∂Wi j
= 〈xi y j 〉data − 〈xi y j 〉model (44)

where 〈xi y j 〉data and 〈xi y j 〉model represent the expectations
under the distribution defined by the subscript that follows.
The updated weights using stochastic descent method is solved
by


Wi j = α(〈xi y j 〉data − 〈xi y j 〉model) (45)

where α > 0 is the learning rate. It is noted that for any visible
unit x, we have

p(xi = 1|y) = σ

⎛
⎝ai +

∑

j

y j Wi j

⎞
⎠ (46)

where σ(◦) is the logistic sigmoid function. Analogously, for
any hidden unit y, we know

p(y j = 1|x) = σ

(
b j +

∑

i

xi Wi j

)
. (47)

It is suggested that 〈xi y j 〉data is easy to compute using
the aforementioned formulations. Unfortunately, it is tough
to obtain an unbiased sample of 〈xi y j 〉model, which would
consume a large amount of computational cost if performing
alternating Gibbs sampling by starting at any stochastic state
of the visible units. Toward this end, Hinton [93] proposed
a faster optimization method in 2002, replacing 〈xi y j 〉model
with 〈xi y j 〉recon, indicating that the optimization problem is
rewritten as


Wi j = α(〈xi y j 〉data − 〈xi y j 〉recon). (48)

Overall, RBMs have been capturing growing attention in
recent years. Nevertheless, how to improve the training effi-
ciency is still an open issue.

D. Deep Belief Nets

As a type representative of probabilistic generative model,
deep belief nets were proposed by Hinton et al. [9] in 2006.
This network consists of multiple layers of stochastic and
latent units, where the latent variables are frequently binary-
valued. The top two layers are connected with an undirected
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Fig. 8. Illustration of the architecture of deep belief nets.

and symmetric graph, constructing an associative memory. The
architecture of deep belief nets is demonstrated in Fig. 8.

It is observed from Fig. 8 that deep belief nets are treated
as one type of RBMs. The crucial procedure behind deep
belief nets is to optimize W with the learned conditional
distribution p(x|y, W) and prior distribution p(y|W) from an
RBM. Therefore, the probability of generating a visible unit
x is formalized as

p(x) =
∑

y

p(y|W)p(x|y, W). (49)

While fixing p(x|y, W), the weighted matrix W is updated
by replacing p(y|W) with a better model of the aggregated
posterior distribution over the hidden variables. Actually,
the complementary prior at each layer guarantees that the
posterior distribution could be factorial.

For feature representation and dimensionality reduction,
deep belief nets are regarded as a nonlinear model as well.
Indeed, deep belief nets act as a model that could produce
complex nonlinear features in the last layer, in which these
features are justified by minimal reconstruction error to the
visible units.

III. EXPERIMENTS ANALYSES

Extensive experiments are conducted to provide a fair
comparison for the aforementioned unsupervised deep feature
representation methods. The selective experimental databases
are characterized as follows.

A. Data Sets

CNAE is a collection of 1080 text documents with nine
categories from Brazilian companies for free text business
characterizations.1 Each document is represented as an 857-D
feature vector, where each feature is the frequency of some
certain word.

20Newsgroups consists of 18821 text documents,
partitioned nearly evenly across 20 newsgroups, leading
to 20 categories in total.2 Each document corresponds to one
different topic, forming a 61 188-D feature vector with word
frequencies.

1https://archive.ics.uci.edu/ml/datasets/CNAE-9
2http://qwone.com/ jason/20Newsgroups/

TABLE I

BRIEF DESCRIPTION OF THE TESTED DATA SETS

Reuters is a subset of the database Reuters21578 of text
documents. This data set is preprocessed as 8293 documents
in 65 categories by discarding those data with multiple cat-
egory labels.3 Each document contains 18 933 distinct terms,
corresponding to a feature vector.

RCV1 is cut from the distinguished RCV text document
corpus, containing 9625 documents.4 Each document is rep-
resented by a 29 992-D feature vector of distinct words.

TOX is a gene database of 171 genetic toxicology (muta-
genicity) text documents with four categories from expert peer
review of open scientific.5 Each document is represented as a
5748-D feature vector.

HAR is a database from the recordings of 30 subjects
performing activities of daily living.6 The data set is composed
of 10 299 documents in six categories, where each document
is extracted as a 561-D feature vector.

TDT2 is a subset of NIST topic detection and tracking
corpus. In this subset, those documents occurring two or more
categories were eliminated, and only the top 30 categories
were preserved, leaving totally 9394 documents of 36 771-D
features.7

DBWorld is a data collection of 64 e-mails manually pro-
duced from DBWorld mailing list with two categories. Each
document is represented as a 4702-D feature vector, in which
each feature value corresponds to a precise word or stem in
the entire data set vocabulary.8

With the aforementioned descriptions, a brief characteriza-
tion to all tested data sets is summarized in Table I.

B. Parameter Settings

For all compared feature representation algorithms,
the learning rate is fixed as α = 0.1. As to those multilayered
neural networks, the numbers of layers are set as 3, and the
numbers of hidden variables in the first and second layers are
tuned as 400 and 500, respectively. In order to provide a fair
comparison, the number of units in the last hidden layer ranges
in {20, 30, . . . , 200}. Meanwhile, the numbers of epochs for all
algorithms are fixed as 50, and the batch sizes are set as 100.
Besides, the default settings are adopted for other algorithmic
parameters.

3http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
4http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
5https://toxnet.nlm.nih.gov/newtoxnet/genetox.htm
6http://archive.ics.uci.edu/ml/datasets
7http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
8http://archive.ics.uci.edu/ml/datasets/DBWorld+e-mails
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Fig. 9. Illustration of varying unsupervised deep feature representation methods on the data set TOX with four classes, where the dimensionality-reduced
samples from the same class are marked with the same color. Naturally, the better method is that the samples having the same color are clustered together,
while ones having different colors are scattered.

TABLE II

CLUSTERING ACC (MEAN% ± STD%) WITH DIFFERENT UNSUPERVISED FEATURE REPRESENTATION METHODS. THE BEST RESULTS ARE MARKED IN

BOLD (THE HIGHER THE BETTER)

All compared unsupervised methods are evaluated by their
clustering performances of the feature representations in the
last hidden layer. In these circumstances, the K -means method
is employed for the clustering performance specification. Due
to initialization sensitivity, the mean and standard deviation
of 20 repeated experiments are reported.

C. Evaluation Metrics

Due to the absence of class label information, the clus-
tering evaluation for unsupervised learning tasks is a tough
issue. Toward this end, we adopt three evaluation metrics
to assess the clustering performance, including clustering

ACC, normalized mutual information (NMI), and adjusted
rand index (ARI). Denote the set of data points as {xi}ni=1.
Suppose that {li }ni=1 is the given ground truth and {l̂i }ni=1 is the
predictive clustering labels. The clustering ACC is calculated
by

ACC =
∑n

i=1 δ(li , map(l̂i ))
n

(50)

where map(◦) is a permutation mapping that best matches
the predictive clustering labels to ground truths, and δ is a
Dirac delta function, i.e., δ(li , l j ) = 1 if li = l j ; otherwise,
δ(li , l j ) = 0.
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TABLE III

NMI (MEAN% ± STD%) WITH DIFFERENT UNSUPERVISED FEATURE REPRESENTATION METHODS.
THE BEST RESULTS ARE MARKED IN BOLD (THE HIGHER THE BETTER)

TABLE IV

ARI (MEAN% ± STD%) WITH DIFFERENT UNSUPERVISED FEATURE REPRESENTATION METHODS.
THE BEST RESULTS ARE MARKED IN BOLD (THE HIGHER THE BETTER)

Given two random variables P and Q, their NMI is com-
puted by

NMI(P, Q) = I (P;Q)√
H (P)H (Q)

(51)

where I (◦; ◦) is the mutual information and H (◦) is the
information entropy. Let the predictive clustering result be
C̃ = {C̃i }̃ci=1 and the ground truth be C = {C j }cj=1. Herein,
NMI can be defined by

NMI =
∑c̃

i=1
∑c

j=1 |C̃i ∩ C j |log
n|C̃i∩C j |
|C̃i ||C j |√(∑c̃

i=1 |C̃i |log |C̃i |
n

) (∑c
j=1 |C j |log |C j |

n

) . (52)

ARI is a distance metric that can measure the similarity
between two data clusterings. Denote ni j = |C̃i ∩ C j |, ai =∑c

j=1 ni j , and b j = ∑c̃
i=1 ni j for any i ∈ {1, . . . , c̃} and

j ∈ {1, . . . , c}. Consequently, ARI can be computed with

ARI =
�i j

(ni j
2

)−
[
�i

(ai
2

)
� j

(b j
2

)]
/
(n

2

)

1
2

[
�i

(ai
2

)+� j
(b j

2

)]−
[
�i

(ai
2

)
� j

(b j
2

)]
/
(n

2

) . (53)

These three evaluation metrics are positively related to the
clustering performance. In other words, higher values of ACC,

NMI, and ARI are suggestive of a better clustering result as
well as feature representation performance.

D. Experimental Visualizations

In this section, an experimental visualization is reported to
provide an intuitive demonstration of low-dimensional repre-
sentations learned by different deep neural networks. Taking
the data set TOX as an example, the number of reduced
dimensions is set as 2. Varying unsupervised deep feature
representation methods are visualized in Fig. 9.

It is observed Fig. 9 that varying unsupervised deep feature
representation approaches come with different visualization
performances. The best feature representation, in theory, is a
mapping with maximal between-cluster distance and mini-
mum within-cluster distance simultaneously, where the circles
marked with the same color can be regarded as one cluster.
From this perspective, almost all tested feature representa-
tion methods perform favorably because all data points are
projected onto a low-dimensional space with a large mar-
gin between the circles with different colors. Nonetheless,
the learned low-dimensional distribution by different methods
differs. As an example, the sparse autoencoder projects the
original data points onto a nearly linear distribution, and so
are contractive, variational, and residual autoencoders.
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E. Experimental Results

In this section, the compared unsupervised deep feature
representation approaches are tested on eight publicly available
data sets of text documents. Meanwhile, we report their respec-
tive performances in terms of data clustering, as demonstrated
in Tables II–IV.

From Tables II–IV, we have the following observations.
In the first place, most of the unsupervised deep feature
representation methods are capable of learning an effective
low-dimensional representation, which is validated by the fact
that the performance of the learned representation outperforms
the baseline method that uses all original features for clus-
tering. Then, the feature representation methods have a pos-
itive influence on the improvement of learning performance.
As an example, the best compared method exhibits a definite
superiority over the baseline method in the data sets, such
as 20Newsgroups, RCV1, TDT2, and DBWorld. Certainly,
feature representation techniques may fail to improve the clus-
tering performance in some specific situations. For instance,
stacked autoencoders work unfavorable in the data set CNAE,
and deconvolutional networks perform undesirable in the data
set Reuters. The learning performance fluctuation is partly
due to the fixed parameter settings of tested neural networks
for a fair experimental comparison. Finally, the majority of
unsupervised feature representation methods could exceed the
baseline. From the perspective of structured learning, certain
feature representation method attempts to learn an effective
low-dimensional embedding with specific patterns. In partic-
ular, sparse autoencoders favor the sparsity of the activated
neurons in hidden layers, while adversarial autoencoders stress
the robustness of the learned low-dimensional representation.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented an overview of a number
of unsupervised deep feature representation methods. These
reviewed methods included autoencoders and their vari-
ants, deconvolutional networks, RBMs, and deep belief nets.
In addition, extensive comparative experiments were con-
ducted on eight publicly available data sets of text documents.
These experiments provided a comprehensive comparison
for all tested feature representation approaches, aiming at
exhibiting respective benefits of varying deep feature learning
methods in text clustering. It is expected that this paper would
provide some insights and enlightenments for who is highly
interested in unsupervised deep learning. In our future work,
we will explore more efficient unsupervised deep learning
methods with given data-driven scenes.
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