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Abstract—Deep learning-based clustering methods, especially
those incorporating deep generative models, have recently
shown noticeable improvement on many multimedia benchmark
datasets. However, existing generative models still suffer from
unstable training, and the gradient vanishes, which results in
the inability to learn desirable embedded features for clustering.
In this paper, we aim to tackle this problem by exploring the
capability of Wasserstein embedding in learning representative
embedded features and introducing a new clustering module
for jointly optimizing embedding learning and clustering. To
this end, we propose Wasserstein embedding clustering (WEC),
which integrates robust generative models with clustering. By
directly minimizing the discrepancy between the prior and
marginal distribution, we transform the optimization problem of
Wasserstein distance from the original data space into embedding
space, which differs from other generative approaches that
optimize in the original data space. Consequently, it naturally
allows us to construct a joint optimization framework with the
designed clustering module in the embedding layer. Due to the
substitutability of the penalty term in Wasserstein embedding, we
further propose two types of deep clustering models by selecting
different penalty terms. Comparative experiments conducted on
nine publicly available multimedia datasets with several state-
of-the-art methods demonstrate the effectiveness of our method.

Index Terms—Unsupervised learning, clustering analysis,
Wasserstein embedding, generative models, auto-encoder

I. INTRODUCTION

CLustering [1]–[4] is an essential research problem in
machine learning and data mining. With the development

of deep learning technology, the combination of deep learning
and clustering, also known as deep clustering, has become a
promising research issue. Deep clustering takes advantage of
deep learning to extract representative features for raw data to
facilitate clustering. The classical deep clustering methods [5]–
[9] are typically two-stage models, which first utilize various
embedding learning methods to learn the representation of
original data and then perform clustering.

However, the embedded features obtained in this way are
not guaranteed to be suitable for clustering tasks, which
leads to unsatisfactory clustering performance. To address this
issue, recent studies [10]–[12] have focused on incorporating a
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clustering component in the network architecture. As a result,
the network can be jointly optimized for embedding learning
and clustering during the training process, resulting in the
embedded representation that is beneficial for clustering tasks.
Auto-encoder [13] is the most commonly used embedding
learning method in deep clustering, and some studies [14], [15]
have further improved clustering performance by exploiting its
improved variants.

Generative models like variational auto-encoder (VAE) [16],
[17] and generative adversarial networks (GAN) [18], [19] are
more effective in representation learning and generating mean-
ingful new samples. Various generative models have received
extensive attention in recent years, especially with the proposal
of Wasserstein GAN (WGAN) [20], [21] based on optimal
transport (OT) theory [22]–[24]. Several works [25]–[28] have
utilized generative models to improve clustering performance.
We know that, in general, the data in the original space
can be well represented in a low-dimensional manifold, and
accordingly, the embedding space then supports the data in the
original data space. Many distance measurements, such as f -
divergences used in classical GAN [29] that reflect the density
ratio among two distributions, often indicate a strong distance
concept. However, they may fail to provide usable gradients for
training, i.e., the gradient vanishes when there is hardly any
non-negligible overlap between the distributions (commonly
seen in GANs). In contrast, the Wasserstein distance induced
from OT has been proven to offer a much weaker topology [20]
compared to them, which could provide smoother gradients for
training, and consequently, facilitate the embedding learning
process in deep clustering.

In this paper, we propose a novel Wasserstein embedding
clustering (WEC) model through introducing the Wasserstein
embedding [30], [31] and a designed clustering module.
Specifically, we transform the optimization problem of Wasser-
stein distance between data distribution and model distribu-
tion into an encoding-decoding-like process (see Theorem 1).
Then, we propose to optimize the Wasserstein embedding
and clustering simultaneously in the embedding space rather
than in complex data space like GANs. Figure 1 summarizes
the workflow of our method. The whole framework can be
divided into two modules. The first one is the Wasserstein
embedding module that consists of an encoder, a decoder, and
a penalty term. The encoder aims to learn embedded features
from the input data while the decoder conversely reconstructs
them from the embedded features. The penalty term works
in the expectation that the embedded distribution matches
the prior distribution by penalizing the discrepancy between
them. Second, a clustering module is developed in the em-
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Fig. 1. An illustration of the proposed Wasserstein embedding clustering method, which can be partitioned into two components: the Wasserstein embedding
learning module and the clustering module. Specifically, The embedding learning layer aims to obtain the embedded features for the clustering task, while
the clustering module provides a clustering objective to guide the embedded features toward clustering, which is a joint optimization process. By introducing
a substitutable penalty term D(EZ, PZ), two generative deep clustering methods are proposed.

bedding layer to define an explicit clustering objective based
on embedded features. This allows us to jointly optimize the
Wasserstein embedding and clustering, leading to an end-to-
end generative clustering model. Notably, the penalty term is
substitutable, implying that we could construct different clus-
tering models by choosing different divergences. Specifically,
we choose two ways in practice. One is to employ Jensen-
Shannon divergence (JS-divergence) with adversarial training,
i.e., WEC-GAN, in which case the encoder is considered the
generator, and a discriminator is inserted into the embedding
layer to achieve the min-max optimization. The other way is
to employ maximum mean discrepancy (MMD) as the penalty
term, i.e., WEC-MMD, because of its advantage in matching
high dimensional standard normal distribution. In this case, we
only need to optimize a non-adversarial problem. Experimental
results comparing with some popular clustering methods on
nine databases demonstrate the superiority of our proposed
method. The main contributions of our work are summed up
as follows:

• We propose a novel Wasserstein embedding clustering
model, which takes advantage of generative models in
learning representative embedded features and facilitates
clustering by jointly optimizing the Wasserstein embed-
ding and clustering objective.

• We provide two realization approaches to the Wasserstein
embedding clustering, one is based on Jensen-Shannon
divergence and adversarial training, and the other is based
on the maximum mean discrepancy.

• Extensive experimental results demonstrate that our
method significantly outperforms the baselines and has
state-of-the-art clustering performance.

The remainder of this paper is organized as follows.

Some related works on deep clustering and the concept of
Wasserstein distance are briefly reviewed in Section II. The
architecture of the two modules of the proposed method
and the joint optimization strategy are described in detail in
Section III. Then, comprehensive experiments are presented
in Section IV to demonstrate the effectiveness of our method.
Finally, relevant conclusions are presented in Section V.

II. RELATED WORKS

In this section, we briefly present a review of some related
works on deep clustering and generative model-based cluster-
ing, as well as the concept of Wasserstein distance.

A. Deep Clustering

Deep clustering, which takes advantage of deep learning
in capturing representation to facilitate clustering, has been
extensively studied in the past decade. It can be broadly
divided into two categories, i.e., two-stage based and joint
optimization-based approaches. Early works [32]–[36] have
focused on the two-stage approach of applying various em-
bedding learning methods to obtain low-dimensional repre-
sentation and then perform clustering. For example, Patel
et al. [37] applied sparse coding to learn a projection of
data and discover the sparse coefficients in the latent space,
then adopted spectral clustering to realize the cluster labels
assignment. Since the approaches based on shallow linear
models could fail when dealing with non-linear data structure,
Peng et al. [38] improved the deep subspace clustering by
introducing a sparsity prior in the embedding learning to
capture more meaningful features. Nevertheless, these methods
are limited by the difficulty of guaranteeing that the learned
features are suitable for clustering during embedding learning.
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To address the above-mentioned issue, some recent works
have focused on jointly learning the clustering-oriented repre-
sentation. Xie et al. [10] proposed deep embedded clustering
(DEC) method to introduce a clustering objective into opti-
mization, thus enabling the network to be optimized for the
clustering task. Since the structure of DEC lacks a decoder
in training, which may lead to distortion of feature space.
Guo et al. [39] further improved DEC by considering the
reconstruction loss of the auto-encoder in training to maintain
the local structure of data. Moreover, Yang et al. [11] proposed
the joint unsupervised learning (JULE) model, which inte-
grated convolutional neural network with clustering to jointly
optimize the embedding learning and clustering based on the
idea that a good representation facilitates clustering tasks.
Ghasedi et al. [14] proposed the deep embedded regularized
clustering (DEPICT) method to simultaneously implement
the cluster allocation and learn discriminative representation.
Based on the invariance of sample assignments in clustering
when different measures are applied, Peng et al. [40] found a
new prior for sample-assignment invariance, and proposed an
end-to-end deep clustering model (DCSAIP) with this prior
through the minimization of the discrepancy among sample
assignments of different measures.

B. Generative Model-Based Clustering Approaches

The adoption of embedding learning methods with bet-
ter data revealing capability, especially like generative mod-
els [41]–[43], provides another way to improve clustering.
VAE is a widely used generative model, and some studies
also applied it to facilitate clustering. By introducing the
probabilistic clustering issue to the VAE architecture, Jiang
et al. [25] proposed the variational deep embedding approach
(VaDE), which combines the VAE network and Gaussian
mixture model for clustering. Yang et al. [44] applied Gaussian
mixture VAE (GMVAE) [45] to improve the performance
of game level clustering, which also allowed the model to
generate corresponding game levels as required.

Additionally, GAN is another approach that has been often
employed to promote clustering. For example, by introducing
the adversarial learning strategy to guide the process of feature
learning and clustering, Zhou et al. [46] proposed a novel
generative model-based clustering method to learn features
that are more beneficial for subspace clustering. Ghasedi et
al. [47] proposed a deep clustering model based on GAN by
employing an adversarial game between a generator, discrim-
inator, and clusterer.

C. Wasserstein Distance

The optimal transport (OT) problem is based on measuring
the distance between two probability distributions, i.e., the op-
timal strategy for transforming one distribution into the other
through transportation. Given the input data distribution PX

and the model distribution PY, the Kantorovich’s formulation
of OT cost is defined as follows:

Wc(PX, PY) = inf
θ∈Θ(PX,PY)

E(X,Y)∼θ[c(X,Y)], (1)

where Θ(PX, PY) denotes the collection of all the joint distri-
butions of (X,Y) under margins PX and PY respectively, and
c(X,Y) represents the cost function. Particularly, when a met-
ric m(·, ·) satisfies the conditions that c(X,Y) = m(X,Y)d

and d ≥ 1, then Wp := p
√
Wc, the p-th root of the OT cost

Wc is called p-Wassersttein distance.
Consequently, the Wasserstein distance is derived from the

OT problem as a way of measuring the discrepancy between
two distributions. Compared with other distance measure-
ments such as KL-divergence (in VAEs) and JS-divergence
(in GANs), Wasserstein distance provides a more weakly
convergent probability measure that benefits the stability of
model training. It has been widely studied in machine learning
over recent years. The generative models based on Wasserstein
distance, especially WGAN and its variants [48], [49], have
been a promising solution to improve clustering. Yang et
al. [50] proposed to combine WGAN-GP [41] and VAE to
construct a new clustering framework, and further improved
the stability of the model in clustering when facing outliers.
With the discussion of the relation of k-means and OT, Mi et
al. [51] solved the OT problem via the variational theory and
proposed to simultaneously optimize the Wasserstein distance
between the centers and the target domain with clustering
error. However, to the best of our knowledge, the combination
of Wasserstein embedding and clustering in the embedding
space is still an open issue in deep clustering.

III. PROPOSED METHOD

In this section, the proposed Wasserstein embedding cluster-
ing model is introduced, and Figure 1 summarizes the frame-
work of our method. First, the Wasserstein embedding module
is introduced to capture the low-dimensional representation of
the original data. Then, the self-optimized clustering module is
developed to simultaneously achieve the learning of embedded
representation and the assignment of clustering labels in the
embedding space. To facilitate the reading of the paper, some
major notations and their explanations are summarized in
Table I.

A. Wasserstein Embedding Module

The goal of embedding learning is to capture low-
dimensional features for input data, and auto-encoder is a
common embedding learning framework. It can be regarded
as solving the following problem:

Problem 1: Given a input data X ∈ Rn×d, find a mapping
E : X → Z and an inverse mapping G : Z → X that
minimizes the following objective:

c(X, G(E(X))), (2)

where c denotes the cost function, E maps X to the embedded
representation Z and then G attempts to reconstruct X from
Z. This problem can be easily optimized with deep neural
networks, and adopting the commonly used MSE loss as the
cost function may be sufficient for handling the reconstruction
task. However, our aim is to cluster, which requires the data
to be discriminative enough. Thus, we explore the capability
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TABLE I
DESCRIPTION OF SOME MAJOR NOTATIONS.

Notation Explanation

n Sample size of the input data
d Dimension of the input data
d′ Dimension of the embedded representation
β, γ Hyper-parameters of our model
µ Cluster centroid
X Original data space
Z Embedded space
X Input data matrix
Y Output reconstructed data matrix
Z Embedded representation
Z̃ Samples from prior distribution
PX Input data distribution
PY Model distribution
EZ Embedded distribution
PZ Prior distribution
S soft label distribution in the clustering module
T Target distribution in the clustering module
D Penalty term of Wasserstein embedding
E,G Encoder and Decoder
V Predicted cluster labels of the model

of the generative model in learning representation to capture
more discriminative features for clustering tasks.

Now, we define a latent variable model PY as follows:

py(x) :=

∫
Z
py(x|z)pz(z)dz, (3)

where PY(X|Z) denotes a non-random decoder distribution,
i.e., generative model. And PY maps the latent representation
Z to the original data X ∈ X via a mapping G : Z → X . The
generative model aims to minimize the discrepancy among
data distribution PX and model distribution PY, and typically,
the f -divergences are the commonly used strategies. However,
these solutions may suffer from gradient vanishing and un-
stable training, resulting in undesirable embedding learning.
Therefore, we introduce the Wasserstein embedding learning
to address this issue, as Wasserstein distance can provide
more weakly convergent probability measure and smoother
gradients, leading to more stable training and learning of more
representative representation.

In the OT problem described in Eq. (1), the coupling
θ(X,Y) = θ(Y|X)PX(X) is considered, where θ(Y|X) is
regarded as the mapping from X to Y. While in this case,
we need to solve the optimization problem in the complex
data space X , and it is also hard for us to construct an end-
to-end clustering framework in the embedding layer. To this
end, we introduce the following Theorem 1 proved in [30]
to reparametrize this mapping into an encoding-decoding like
process, i.e., to transfer the optimization problem from the
original data space X to the embedding space Z via the
transport X → Z → Y:

Theorem 1: For a generative model PY with deterministic
PY(X|Z) and arbitrary mapping function G : Z → X , it

holds:

Wc(PX, PY) = inf
θ∈Θ(PX,PY)

E(X,Y)∼θ[c(X,Y)]

= inf
E : EZ=PZ

EPX
EE(Z|X)

[c(X, G(Z))], (4)

where EZ denotes the marginal of Z when X ∼ PX and
Z ∼ E(Z|X).

With Theorem 1, Eq. (1) can be explicitly connected to
Problem 1. More specifically, given a deterministic mapping
from the prior latent distribution PZ to PY, the Wasserstein
distance between PX and PY can be transformed from search-
ing for the coupling θ of random variables from two distri-
butions respectively to search for the conditional distribution
E(Z|X), such that its Z-margin is the same as PZ, i.e.,
EZ(Z) =

∫
E(Z|X)PX(X)dX = PZ. EZ(Z) also denotes

the aggregated posterior.
Subsequently, the objective turns out to be the optimization

over a probabilistic encoder E(Z|X). By imposing a penalty
term D(EZ, PZ) to relax the constraint on EZ, we finally
obtain the objective of the Wasserstein embedding module:

LWE = inf
E(Z|X)∈E

EPX
EE(Z|X)[c(X, G(Z))]

+ β · D(EZ, PZ), (5)

where E denotes a collection of non-parametric probabilistic
encoders, and β is a hyper-parameter. D indicates an arbitrary
measure of the discrepancy between EZ and PZ, and the
different choices of D allow us to construct various types of
clustering networks. Note that the encoder E and decoder G
are constructed by fully connected networks.

B. Self-Optimized Clustering Module
Since the embedded features obtained by Wasserstein em-

bedding learning are not guaranteed to be suitable for clus-
tering tasks, we develop the self-optimized clustering layer
to include a clustering-oriented objective in the network op-
timization. The embedded representation Z learned from the
Wasserstein embedding learning module is used as the input
of the clustering layer.

To be specific, the clustering loss LC can be formalized as
the KL-divergence between a target distribution T and a soft
label distribution S as follows:

LC = KL(T ||S) =
n∑

i=1

K∑
j=1

tij log
tij
sij

, (6)

where sij denotes the similarity between the learned embedded
feature zi and the cluster centroid µj . Through employing
Student’s t-distribution to measure the similarity, sij can be
defined as follows:

sij =
(1 + ∥zi − µj∥2)−1∑K
j=1(1 + ∥zi − µj∥2)−1

. (7)

It can also be considered a soft label allocation indicating
the probability of assigning a sample i for the cluster j. In
addition, the target distribution T is computed from soft label
distribution S and is formalized as follows:

tij =
s2ij/

∑
i sij∑

j s
2
ij/

∑
i sij

, (8)
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where tij emphasizes the soft label allocations with higher
probability by raising sij to the second power. The clustering
module aims to match the soft label distribution S to the target
distribution T , thus producing soft labels with high confidence
to guide the clustering. Therefore, we can regard the clustering
module as a self-optimized network.

C. Joint Optimization Strategy

To obtain a clustering-oriented representation, we jointly
optimize the Wasserstein embedding and clustering with the
following loss function:

L =LWE + γ · LC

= inf
E(Z|X)∈E

EPX
EE(Z|X)[c(X, G(Z))]

+ β · D(EZ, PZ) + γ · KL(T ||S), (9)

where β and γ control the contributions of regularization
penalty term and clustering loss, respectively. c(X, G(Z))
represents the reconstruction loss, which is implemented by

c(X, G(Z)) = ∥X−G(Z)∥2F = Lr. (10)

It is worth mentioning that the multiple choices of D allow
us to construct various clustering algorithms. By applying
two different D, we propose GAN-based and MMD-based
Wasserstein embedding clustering, namely WEC-GAN and
WEC-MMD.

1) WEC-GAN: By applying the JS-divergence, we utilize
D(EZ, PZ) = DJS(EZ, PZ) to measure the discrepancy be-
tween EZ and PZ, which can be defined as follows:

DJS(EZ, PZ) =
1
2KL(EZ ∥ EZ+PZ

2 ) + 1
2KL(PZ ∥ PZ+EZ

2 ).

(11)

Meanwhile, adversarial training is used in the optimization. To
be specific, the encoder E(Z|X) serves as the generator in this
case, and a discriminator D is introduced in the embedding
space to distinguish between true samples from prior PZ and
fake samples from generator EZ. Compared with other GAN-
based methods, the game of generator and discriminator in
WEC-GAN plays in the embedding space rather than the
original data space. The training strategy of WEC-GAN is
described in Algorithm 1.

2) WEC-MMD: Due to the advantage in matching high
dimensional standard normal distribution, the maximum mean
discrepancy is another optional way of measuring the discrep-
ancy between EZ and PZ. Therefore, we propose to employ
D(EZ, PZ) = DMMD(EZ, PZ), which is defined as follows:

DMMD(EZ, PZ) =
∥∥∫

Z k(z, ·)dEZ(z)−
∫
Z k(z, ·)dPZ(z)

∥∥
Hk

,

(12)

where k : Z × Z → R denotes the positive definite
reproducing kernel and Hk is the reproducing kernel Hilbert
space of the mapping function from Z to R. Note that we
construct an adversary-free model in this case, i.e., the model
attempts to solve a min-min optimization issue. The training
strategy of WEC-MMD is described in Algorithm 2.

Since the reconstruction loss is too weak to be effective
at the beginning, which prevents us from obtaining mean-
ingful representation, we first pre-train an auto-encoder to

Algorithm 1 Wasserstein embedding clustering based on GAN
(WEC-GAN)
Input: Original data X, number of clusters K, parameters

β and γ, number of epochs MaxEpoch, learning rate α,
interval for update O.

Output: The predicted cluster labels V .
1: Initialize encoder E, decoder G, discriminator D and

cluster centroid µ;
2: for epoch = 1 to MaxEpoch do
3: ——–Forward Propagation——–
4: Obtain embedded representation Z;
5: Calculate soft label distribution S using Eq. (7);
6: if epoch%O == 0 then
7: Compute target distribution T according to Eq. (8) ;
8: end if
9: Sample Z̃ from the prior PZ;

10: Calculate the the reconstruction loss Lr via Eq. (10);
11: Calculate the penalty term DJS(EZ, PZ) via Eq. (11);
12: Calculate the the clustering loss LC via Eq. (6);
13: ——–Backward Propagation——–
14: Sample a batch with nb samples from X;
15: Update the discriminator D via back-propagation and

ascending D = D + α
nb

∑nb

i=1(logD(z̃i) + log(1 −
D(zi));

16: Update the cluster centroid µj via µj = µj −
α
nb

∑nb

i=1
∂LC
∂µj

;
17: Update the weight parameter Θ′ of the decoder G via

Θ′ = Θ′ − α
nb

∑nb

i=1(
∂Lr
∂Θ′ + β · ∂DJS

∂Θ′ );
18: Update the weight parameter Θ of the generator (en-

coder) E via Θ = Θ− α
nb

∑nb

i=1(
∂Lr
∂Θ+β· ∂DJS

∂Θ +γ · ∂LC
∂Θ );

19: end for
20: Obtain clustering result from V according to Eq. (13);
21: return The predicted cluster labels V .

initialize the network parameters. Then, we perform the joint
optimization to improve the embedding learning. Stochastic
gradient descent (SGD) is utilized to update the embedded
representation Z and cluster centroid µ according to the
gradient of L w.r.t. Z and µ. In the training process, the target
distribution T serves as the ground truth, and it is determined
by soft label distribution S. However, updating T and S at
each iteration is risky, because it will cause a constant change
of the objective, which hinders the embedding learning and
convergence. To prevent instability in training, T is updated
every five iterations in practice. Finally, with the updated S,
we can derive the final allocated label vi for sample xi as
follows:

vi = argmax
j

sij , (13)

where vi denotes the allocation of the category j with the
highest confidence to sample xi.

D. Discussion with GAN-based and VAE-based approaches

Here, we briefly discuss the similarities and differences
between our method and the GAN-based and VAE-based
approaches. We see that the proposed WEC-GAN constructs a
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Algorithm 2 Wasserstein embedding clustering based on
MMD (WEC-MMD)
Input: Original data X, number of clusters K, parameters

β and γ, number of epochs MaxEpoch, learning rate α,
interval for update O.

Output: The predicted cluster labels V .
1: Initialize encoder E, decoder G and cluster centroid µ;
2: for epoch = 1 to MaxEpoch do
3: ——–Forward Propagation——–
4: Obtain embedded representation Z;
5: Calculate soft label distribution S using Eq. (7);
6: if epoch%O == 0 then
7: Update target distribution T according to Eq. (8) ;
8: end if
9: Sample Z̃ from the prior PZ;

10: Calculate the the reconstruction loss Lr via Eq. (10);
11: Calculate the penalty term DMMD(EZ, PZ) via Eq. (12);
12: Calculate the the clustering loss LC via Eq. (6);
13: ——–Backward Propagation——–
14: Sample a batch with nb samples from X;
15: Update the cluster centroid µj via µj = µj −

α
nb

∑nb

i=1
∂LC
∂µj

;
16: Update the weight parameter Θ′ of the decoder G via

Θ′ = Θ′ − α
nb

∑nb

i=1(
∂Lr
∂Θ′ + β · ∂DMMD

∂Θ′ );
17: Update the weight parameter Θ of the generator (en-

coder) E via Θ = Θ− α
nb

∑nb

i=1(
∂Lr
∂Θ + β · ∂DMMD

∂Θ + γ ·
∂LC
∂Θ );

18: end for
19: Obtain clustering result from V according to Eq. (13);
20: return The predicted cluster labels V .

min-max adversarial training, which is similar to GAN-based
methods [47], [50]. Nevertheless, compared with them, WEC-
GAN conducts the adversarial game in the embedding space Z
rather than in the data space X . In this case, we only need to
match an easier prior distribution PZ (Gaussian distribution)
instead of a more complex data distribution PX.

Furthermore, similar to VAE [16], the Wasserstein em-
bedding module in our method also contains both the re-
construction loss and penalty term. The reconstruction loss
aims to learn an encoding-decoding mapping that accurately
encodes the input data as low-dimensional embedded features
and then reconstructs them inversely. While the regularizer in
Wasserstein embedding is different from VAE. Specifically,
VAE forces the posterior E(Z|X = x) to match PZ for all
the data X sampled from PX. In contrast, the Wasserstein
embedding forces the aggregated posterior EZ to match PZ,
so that the features learned from different samples may be
far from each other, thereby obtaining more discriminative
embedded features for clustering. The clustering visualization
in Section IV-E also demonstrates that our method can reveal
better cluster structure compared to VAE. Besides, another
difference to most GAN-based and VAE-based approaches is
that our method explicitly defines a clustering objective to
jointly optimize the embedding learning and clustering, which
enables the model to learn clustering-oriented representation.

E. Computational Complexity

Assuming that dmax represents the maximal dimensions of
the hidden layer, the time complexity of WEC model can
be calculated as O(nd2max + ndzK + nd2z), where n and
K indicate the number of samples and clusters, dz denotes
the size of embedding layer. Since K ≤ dz ≤ dmax,
the time complexity can be further simplify to O(nd2max).
Consequently, our method is efficient as it can be regarded as
a linear clustering method. The time complexity of our method
is of the same order of magnitude as some well-known deep
clustering methods such as IDEC’s O(nd2max + ndzK) and
DCSAIP’s O(nd2max).

IV. EXPERIMENT

In this section, the detailed experimental settings are first
illustrated, which contains the description of datasets, compar-
ative methods, and implementation details. Then, we introduce
the evaluation metrics used in the experiments. Finally, we
conduct a comprehensive experiment to verify the effective-
ness of WEC from different perspectives.

A. Experimental Settings

1) Datasets: For validating the effectiveness and com-
petitiveness of WEC compared to other approaches, nine
publicly available databases are employed: MNIST1, Fashion-
MNIST2, STL-103, CIFAR-104, Reuters-10K [52], ImageNet-
105, ImageNet-Dog-15, and Tiny-ImageNet6, and we only
briefly describe each database here.

• MNIST incorporates 70,000 hand-written digit samples,
and 60,000 of them constitute the training set with the rest
for the test. They are grouped into 10 different classes,
and each sample comes with a 28× 28 size.

• Fashion-MNIST consists of 10 different kinds of fashion
items, including trousers, dresses, sneakers, etc. This
dataset comes with an identical number of samples and
image sizes to MNIST.

• STL-10 comprises 13,000 real-world images in 10 differ-
ent categories such as car, dog, truck, etc. Each sample
is a 96× 96 RGB image.

• CIFAR-10 is a database comprising 32×32 RGB images
from 10 categories, including 50,000 training examples
and 10,000 test examples.

• REUTERS-10K is the sub-set of the REUTERS database
that covers 10,000 documents in 4 categories. Each
document is expressed as a vector of 2,000 dimensions.

• COIL-20 consists of 1,440 samples with 20 objects in
total, each sample is captured from different viewpoints
under varying lighting conditions.

• ImageNet-10 is a widely used subset of ImageNet, which
is composed of 13,000 samples in 10 classes.

1http://yann.lecun.com/exdb/mnist/
2https://github.com/zalandoresearch/fashion-mnist
3https://cs.stanford.edu/ acoates/stl10/
4http://www.cs.toronto.edu/ kriz/cifar.html
5https://image-net.org/download.php
6https://www.kaggle.com/c/tiny-imagenet
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• ImageNet-Dog-15 is a subset of the ImageNet dataset
focused specifically on dog breeds. It comprises 19,500
samples with a wide variety of dog images belonging to
15 different breeds.

• Tiny-ImageNet is a subset of ImageNet, which contains
100,000 training samples and 10,000 testing samples
from 20 different superclasses.

The number of instances and classes of the nine datasets, as
well as their sizes, are summarized in Table II.

TABLE II
THE DETAILED DESCRIPTION OF THE NINE EXPERIMENTAL DATASETS.

Database # Samples # Size # Classes

MNIST 70,000 28×28 10
Fashion-MNIST 70,000 28×28 10
STL-10 13,000 96×96×3 10
CIFAR-10 60,000 32×32×3 10
REUTERS-10K 10,000 2,000 4
COIL-20 1,440 128×128 20
ImageNet-10 13,000 96×96×3 10
ImageNet-Dog-15 19,500 96×96×3 15
Tiny-ImageNet 110,000 64×64×3 20

2) Comparative Methods: To guarantee the persuasiveness
of comparison, the proposed WEC method is compared with
several state-of-the-art clustering approaches, including k-
means [1], Auto-encoder (AE) [13], VAE [16], CatGAN [53],
Gaussian mixture variational auto-encoder (GMVAE) [45],
Deep embedding clustering (DEC) [10], Improved deep em-
bedding clustering (IDEC) [39], Variational deep embed-
ding (VaDE) [25], JULE [11], Deep embedded regularized
clustering (DEPICT) [14], ClusterGAN [47], Deep cluster-
ing with sample-assignment invariance prior (DCSAIP) [40],
VaGAN-GMM [50], Deep clustering with contractive repre-
sentation learning and focal loss (DCCF) [54], Progressive
affinity diffusion (PAD) [55] Deep self-evolution clustering
(DSEC) [56] GATCluster [57], Partition confidence maximisa-
tion (PICA) [58], Mixture of contrastive experts (MiCE) [59],
and Nearest neighbor contrastive clustering (NNCC) [60].

3) Implementation Details: To be fair for comparison,
all deep learning-based clustering models employ the same
network structure. The encoder is constructed with d-500-
500-1,000-d′ fully connected network, and the decoder is
constructed symmetrically with it accordingly, which is taken
inspiration from some excellent deep learning works [61], [62].
Besides, d′ denotes the dimensions of the embedding layer
and is set with the number of categories per dataset. Note that
we applied the ResNet50 model to extract 2,048-dimensional
features for STL-10 in our experiment. For our method, we use
the isotropic Gaussian distribution PZ(Z) = N (Z;0, σ2

z ·Id) as
the prior distribution and Adam as the optimizer. The learning
rate α is set as α = 0.001, and the training epochs are fixed
at 200. Regarding the settings of the two parameters β and
γ in our objective function, we discuss their effects on the
clustering performance at different values in Section IV-F, and
give their recommended ranges. In addition, for WEC-GAN,

we construct the discriminator by a full-connected network
with size dz-128-1. For WEC-MMD, we employ

k(x,y) = 2dzσ
2
z/(2dzσ

2
z + ∥x− y∥22), (14)

which is called the inverse multi-quadratics kernel.

B. Evaluation Metrics

Two popular metrics for clustering analysis, including Clus-
tering Accuracy (ACC) and Normalized Mutual Information
(NMI), are employed to assess the clustering performance in
our experiment.

1) Clustering Accuracy: ACC measures the clustering per-
formance by comparing the resulting predicted labels with the
ground truth labels. Let y be the ground truth labels, and p
be the predicted labels, ACC is defined as follows:

ACC =

∑n
i=1 δ(yi,map(pi))

n
, (15)

where n denotes the sample size, and map(·) indicates a
mapping that makes the predicted labels from the clustering
algorithm match the true labels best. Generally, the optimal
mapping is available through the Hungarian algorithm, which
allows us to address the label allocation problem in polynomial
time. Moreover, it is worth mentioning that δ(x, y) = 1 only
when x = y, while δ(x, y) = 1 in other cases.

2) Normalized Mutual Information: Based on a common
measure within information theory, i.e., mutual information
(MI), NMI is defined. Specifically, let random variables A
and B be discrete, then MI is formalized as follows:

MI(A,B) = H(A) +H(B)−H(A,B), (16)

where the information entropy is applied to calculate H(A)
and H(B), and H(A,B) is defined by the joint information
entropy of A and B. Consequently, the definition of NMI is
given below:

NMI(A,B) = 2
MI(A,B)

H(A) +H(B)
, (17)

it can be regarded as the normalization of MI, and the value
of NMI represents the correlation between two variables. Note
that the values of ACC and NMI both range from [0, 1], and
a higher score means better clustering performance.

C. Experimental Results

The clustering results of the WEC method and other com-
parative approaches on the six experimental benchmarks are
presented in Table III. As can be seen, our method outperforms
the other comparative approaches for most cases, which illus-
trates the superiority of WEC in the clustering task.

It can be observed that the approaches with joint optimiza-
tion of embedding learning and clustering perform better than
those only optimized for embedding learning. For instance,
the ACC and NMI scores of DEPICT, JULE, DCSAIP, WEC-
MMD, and WEC-GAN are significantly better than k-means,
AE, and VAE on the MNIST dataset. This observation illus-
trates that the clustering objective incorporated in the model
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TABLE III
CLUSTERING PERFORMANCE ON SIX EXPERIMENTAL DATASETS. NOTE THAT THE TOP TWO CLUSTERING RESULTS ARE MARKED IN BOLD.

Methods/Datasets
MNIST Fashion-MNIST CIFAR-10 STL-10 REUTERS-10K COIL-20

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-means [1] 57.62 55.43 56.34 52.57 22.19 8.24 28.35 23.48 54.08 35.24 47.33 48.00
AE [13] 78.53 74.90 56.72 55.35 21.63 6.71 34.83 30.08 59.76 32.36 68.74 69.52
VAE [16] 72.48 68.13 60.78 57.58 25.01 10.53 57.69 55.50 62.52 32.96 68.59 70.48
CatGAN [53] 82.79 76.37 55.00 60.00 31.52 26.46 29.84 21.00 59.32 32.38 – –
GMVAE [45] 88.54 79.64 59.60 57.00 33.64 28.47 31.77 23.65 60.08 37.96 71.32 73.80
DEC [10] 84.46 80.91 58.69 59.09 22.37 9.62 36.12 31.82 61.85 31.46 68.90 70.30
IDEC [39] 84.92 82.37 59.23 60.42 23.49 10.38 37.80 32.46 68.43 35.15 71.01 72.80
VaDE [25] 94.50 87.60 55.20 57.30 15.60 3.60 — — 72.30 41.60 75.48 77.90
JULE [11] 96.40 91.30 56.30 60.80 27.15 19.23 27.69 18.15 — — — —
DEPICT [14] 96.50 91.70 39.20 39.20 32.60 27.40 37.10 30.30 — — — —
ClusterGAN [47] 96.40 92.10 — — 41.20 32.30 42.30 33.50 — — 77.00 81.10
DCSAIP [40] 87.16 75.50 — — 22.06 7.02 — — 69.81 34.33 — —
DCCF [54] 97.41 93.32 62.12 64.58 45.81 36.19 72.78 66.84 83.36 55.52 78.51 82.62
VaGAN-GMM [50] 95.48 91.70 63.84 63.30 28.79 15.80 — — 80.12 53.60 79.20 85.10

WEC-GAN 93.07 88.20 62.34 62.74 47.41 33.38 65.42 66.01 81.77 55.59 84.03 88.15
WEC-MMD 96.74 92.23 62.20 62.96 49.24 37.03 70.44 67.27 80.30 51.29 82.71 87.80

is conducive to guiding the network to obtain the embedded
representation appropriate for clustering.

The clustering methods based on generative models also
exhibit remarkable clustering results. For example, Cluster-
GAN and VaGAN-GMM outperform deterministic mapping-
based methods such as DEC, IDEC, and DCSAIP on MNIST,
CIFAR-10, and STL-10. Yet, these two methods promote
clustering in different ways. ClusterGAN improves clustering
through a clustering-oriented idea, for which a clusterer is
introduced to provide the clustering objective, thus enabling
the network to learn more discriminative latent representation.
While VaGAN-GMM improves clustering by combining VAE
and WGAN to enhance the representation capability of the
generator. In addition, VaDE also shows competitive perfor-
mance on MNIST and REUTERS-10K.

It is noteworthy that as a generative deep clustering algo-
rithm, our approach considers both enhancing the representa-
tion capability of the embedding learning module and intro-
ducing a clustering objective. The clustering results of our pro-
posed WEC-MMD method are significantly better than Clus-
terGAN and VaGAN-GMM. Taking the CIFAR-10 database
as an instance, WEC-MMD improves 8.04% and 20.45% over
ClusterGAN and VaGAN-GMM in terms of ACC. Moreover,
our approach also shows competitive performance on other
databases, which is mainly attributed to two aspects. First,
our method holds the encoder-decoder structure, which can
better preserve the data structure during training. Second,
the introduced Wasserstein embedding learning improves the
representation learning capability and training stability of the
network to capture more discriminative embedded features.
Third, incorporating the clustering-oriented objective in the
Wasserstein embedding allows us to obtain a more suitable
representation for clustering in the embedding learning.

Furthermore, Figure 2 shows the clustering performance of
six clustering methods with different numbers of clusters on

MNIST. As can be seen, WEC-GAN and WEC-MMD exhibit
remarkable advantages when the number of clusters is no
less than that of true categories. In general, compared with
other methods, WEC-GAN and WEC-MMD show smaller
fluctuations in the clustering performance when the number
of clusters is varied, which fully demonstrates the robustness
of the proposed approach.

(a) ACC (b) NMI

Fig. 2. Clustering results on MNIST with different cluster numbers.

D. Feasibility in large-scale clustering
To evaluate the feasibility of the proposed methods on large-

scale clustering, we conducted additional experiments on the
ImageNet-10 and ImageNet-Dog-15 datasets [57], [58], [60].
These datasets are known for their extensive scale and com-
plexity, making them popular image benchmarks for assessing
clustering algorithms [58], [60]. Note that we adopted the
MOCO [63] model pre-trained with self-supervised learning
as the feature extractor to preprocess the datasets in the
experiment, and compare the proposed WEC-GAN and WEC-
MMD with eleven strong baselines.

Table IV summarizes the experimental results on the three
datasets. We can observe that both WEC-GAN and WEC-
MMD exhibit outstanding clustering performance, surpass-
ing other competing methods across various evaluation met-
rics. For instance, on the ImageNet-10 dataset, WEC-MMD
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TABLE IV
CLUSTERING PERFORMANCE ON THREE LARGE-SCALE IMAGE

BENCHMARKS. NOTE THAT THE TOP TWO CLUSTERING RESULTS ARE
MARKED IN BOLD.

Methods ImageNet-10 ImageNet-Dog-15 Tiny-ImageNet

ACC NMI ACC NMI ACC NMI

k-means [1] 24.10 11.90 10.50 5.50 2.50 6.50
AE [13] 31.70 21.00 18.50 10.40 4.10 13.10
VAE [16] 33.40 19.30 17.90 10.70 3.60 11.30
DEC [10] 38.10 28.20 17.50 12.20 3.70 11.50
JULE [11] 30.00 17.50 13.80 5.40 3.30 10.20
PAD [55] 65.40 57.80 33.60 32.70 9.80 25.60
DSEC [56] 67.40 58.30 26.40 23.60 6.60 19.00
GATCluster [57] 76.20 60.90 33.30 32.20 — —
PICA [58] 87.00 80.20 35.20 35.20 9.80 27.70
MiCE [59] — — 43.90 42.30 — —
NNCC [60] 75.10 68.30 40.10 37.20 14.10 33.30

WEC-GAN 92.20 85.45 43.72 44.09 17.68 38.29
WEC-MMD 93.93 88.09 45.99 46.24 21.46 40.75

achieves improvements of 6.93% and 7.89% in terms of ACC
and NMI, compared to the runner-up MiCE method. Fur-
thermore, on the challenging Tiny-ImageNet dataset with 200
classes, WEC-GAN and WEC-MMD demonstrate remarkable
competitiveness, significantly outperforming other compara-
tive methods. These experimental results strongly establish the
feasibility and effectiveness of our proposed methods for large-
scale clustering scenarios.

E. Experimental Visualization

To intuitively compare the clustering results, we also employ
the t-SNE method to visualize the embedded representation
learned on the MNIST dataset by seven algorithms, including
AE, VAE, DEC, IDEC, VaDE, WEC-GAN, and WEC-MMD.
Figure 3 shows the visualization of clustering results, and the
original distribution is used as the baseline. We can see that
in the t-SNE visualization of the original distribution, the data
points are mostly obfuscated, and it is difficult to see the
explicit clustering structure. As we look at the visualization
of AE and VAE, we can find a clearer clustering structure,
although some of their categories are still confusing. It is worth
noting that since there is no embedding learning module in
the DEC training, we can see that its distribution is elongated,
which implies larger intra-class distances. On the contrary, the
visualizations obtained by the approaches with joint optimiza-
tion of embedding learning and clustering, such as VaDE,
IDEC, and our methods, exhibit better clustering structures.
More specifically, their visualizations show a circular structure
with more compact data distribution, i.e., smaller intra-class
distances, which suggests that the embedding learning module
helps the network to better capture the data structure of the
embedding space. In addition, the clusters in WEC-MMD
and WEC-GAN can be more clearly distinguished, and the
different classes are more separated from each other than
in VaDE and IDEC, which demonstrates the power of the
generative models in revealing the data structure.

In addition, we further provide a visualization of clustering
results in Figure 4 to understand more intuitively how the

algorithm divides the different clusters. Specifically, we run
WEC-MMD on STL-10, then randomly select ten samples
from the first four clusters and artificially label and color them.
From this figure, we have some interesting observations. First,
although a monkey is mistakenly clustered with the birds in
the second row, they have a very common characteristic: they
are climbing in the trees, and the posture of the monkey is
slightly similar to that of the birds. Second, we also observe
that things with more commonalities are often confused in
clustering, such as cars and trucks, cats and dogs in the third
and fourth rows. This is consistent with human perception
since cars and trucks, cats, and dogs have many similarities in
appearance. Third, this visualization also supports the validity
of our algorithm, as the samples within each cluster exhibit
high similarities.

F. Parameter Sensitivity

The proposed WEC model contains two hyper-parameters γ
and β, in which γ controls the contribution of clustering loss
LC and β controls the contribution of Wasserstein embedding.
By varying the values of these two parameters, we evaluate
their influence on clustering performance. Figure 5 and 6
present the clustering results of WEC-GAN and WEC-MMD
on five datasets (MNIST, Fashion-MNIST, CIFAR-10, STL-
10, and REUTERS-10), where the value of γ ranges from 0.01
to 10 and β takes values from 0.0001 to 0.1. The impacts of
the two parameters are analyzed as follows.

First, for WEC-GAN, we can observe that the clustering
performance decreases when γ is less than 0.05, especially on
the STL-10 dataset. The reason is that too small γ causes the
clustering loss to be overlooked, and the clustering module
cannot effectively guide the soft label allocation. For WEC-
MMD, we can notice from the clustering result on STL-
10 and REUTERS-10K that the ACC and NMI maintain a
good clustering performance when γ ranging in [0.05, 10]
and β ranging in [0.0001, 0.005]. While fluctuations occur
when β is greater than 0.005. Nevertheless, the performance
of WEC-GAN and WEC-MMD with different values of γ
and β remains relatively stable over most of the datasets,
demonstrating the robustness of the proposed two methods.

Second, taking the MNIST database as an example, we
can see the clustering performance improve when the value
of γ increases from 0.01 to 1 and the value of β increases
from 0.0001 to 0.005. However, when the values of these
two parameters are further increased, both the ACC and
NMI of two variants fluctuate although they remain generally
favorable. This is good evidence that the two loss terms
controlled by γ and β are meaningful for the clustering tasks.

Third, it can be seen that compared with NMI, ACC is
more sensitive to these two parameters from the experimental
results of the STL-10 in Figures 5 and 6. Moreover, we can
also observe different ranges of optimal values of γ and β for
different datasets. While in general, the clustering performance
is improved with the values of γ and β in a certain range.
Finally, we provide a general recommended range of values
regarding these two parameters for two WEC variants, as
they can achieve promising clustering performance under the
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Fig. 3. 2D visualization provided by employing t-SNE on the learned embedded representation of the MNIST dataset. Note that we select the test set to
provide the visualization, and the original data is used as the baseline.

Airplane

Truck Bird

Bird
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Truck

Car
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Dog Dog

Fig. 4. Visualization of the clustering results on the STL-10 dataset. Note that we run WEC-MMD on STL-10, then randomly select 10 samples from the
first 4 clusters and artificially label and color them. (Green for correct identification and red for incorrect identification).

specified range. The recommended parameter values range
from γ ∈ [0.5, 1] and β ∈ [0.0001, 0.005] for WEC-GAN,
while γ ∈ [0.05, 0.1] and β ∈ [0.0001, 0.01] for WEC-MMD.

G. Ablation Study

The proposed WEC method is composed of a Wasserstein
embedding module and a clustering module, and the joint
optimization of these two modules allows us to obtain an
encouraging clustering performance. Towards demonstrating
the validity of the Wasserstein embedding and clustering layer,

we conduct the ablation study on three datasets, including
MNIST, Fashion MNIST, and REUTERS-10K. Table V shows
the comparison between WEC and its degraded models that
remove the specified module, from which we have the follow-
ing observations.

First, WEC-MMD and WEC-GAN perform significantly
better than the degraded model WECw/oD(EZ,PZ) that removes
the penalty term D(EZ, PZ). This observation indicates that
the Wasserstein embedding can better reveal the data struc-
ture and thus allow the model to acquire more represen-

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3369862

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fuzhou University. Downloaded on March 24,2024 at 02:46:38 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MULTIMEDIA 11

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10 (d) STL-10 (e) REUTERS-10K

(f) MNIST (g) Fashion-MNIST (h) CIFAR-10 (i) STL-10 (j) REUTERS-10K

Fig. 5. Clustering performance variations of WEC-GAN with two hyper-parameters γ and β on the five datasets. The first and second rows show the ACC
and NMI respectively. Note that the values of γ vary from 0.01 to 10, and β takes values from 0.0001 to 0.1.

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10 (d) STL-10 (e) REUTERS-10K

(f) MNIST (g) Fashion-MNIST (h) CIFAR-10 (i) STL-10 (j) REUTERS-10K

Fig. 6. Clustering performance variations of WEC-MMD with two hyper-parameters γ and β on the five datasets. The first and second rows show the ACC
and NMI respectively. Note that the values of γ vary from 0.01 to 10, and β takes values from 0.0001 to 0.1.

TABLE V
CLUSTERING RESULTS OF WEC AND ITS DEGRADED MODELS. THE BEST

RESULTS ARE MARKED IN BOLD.

Methods
MNIST Fashion-MNIST REUTERS-10K

ACC NMI ACC NMI ACC NMI

WECw/oD(Ez,Pz) 85.65 83.02 59.98 60.21 69.29 36.70

WEC-GANw/oLC 84.39 77.66 58.63 58.26 79.71 50.68

WEC-MMDw/oLC 86.15 78.43 57.87 57.17 76.18 45.34

WEC-GAN 93.07 88.20 62.34 62.74 81.77 55.59

WEC-MMD 96.74 92.23 62.20 62.96 80.30 51.29

tative features. Second, we find that in the two degraded
models WEC-GANw/oLC and WEC-MMDw/oLC , the clustering
performance also decreases as the clustering layer removed
from WEC-MMD and WEC-GAN. This demonstrates that
introducing the clustering module is beneficial for clustering,
and it is reasonable to train the model with the clustering

objective. Overall, the ablation experiments illustrate that the
two modules of WEC are complementary to each other.
Through the joint optimization of the Wasserstein embedding
and the clustering objective, the model is able to obtain a better
clustering assignment.

H. Convergence Analysis
To verify the convergence of the proposed WEC model, we

run WEC-GAN and WEC-MMD on MNIST for 200 epochs.
Figure 7 presents their convergence curves. We can see from
this figure that the objective function values of both two algo-
rithms generally show a decreasing trend and basically reach
convergence after 100 epochs, which proves the convergence
property of our method. Meanwhile, we can observe that the
convergence process of WEC-GAN is smoother than WEC-
MMD.

V. CONCLUSION

In this paper, we propose a Wasserstein embedding clus-
tering model to incorporate Wasserstein embedding and clus-
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(a) WEC-GAN (b) WEC-MMD

Fig. 7. Convergence curves of WEC-GAN and WEC-MMD on MNIST
database.

tering in the embedding space. By solving the optimization
problem of optimal transport and introducing the clustering
objective in the embedding space, WEC jointly optimizes
the Wasserstein embedding and clustering to capture the
clustering-oriented representation. Based on the substitutabil-
ity of penalty term in Wasserstein embedding learning, we
choose two different divergences and propose WEC-GAN and
WEC-MMD. Experimental results on nine publicly available
datasets compared to several state-of-the-art clustering meth-
ods show the superiority of our method.

Note that as shown by the visualization part of this paper,
our method tends to be less effective when dealing with
samples that have significant similarities such as cars and
trucks, cats and dogs. In future work, we will focus on
the issue of identifying those indistinguishable samples. It is
also a promising attempt to extend our approach to multi-
modal clustering. Additionally, it is also worth investigating an
end-to-end framework that integrates the generative clustering
approach with advanced representation learning modules, such
as MOCO [63], BYOL [64], and MAE [65], etc. Incorporating
these modules into the clustering framework rather than solely
adopting them as feature extractors may be able to exploit the
synergistic effects from their joint optimization to improve the
accuracy and robustness of clustering.
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