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ABSTRACT
Graph anomaly detection (GAD) aims to identify anomalous graphs
that significantly deviate from other ones, which has raised grow-
ing attention due to the broad existence and complexity of graph-
structured data in many real-world scenarios. However, existing
GAD methods usually execute with centralized training, which
may lead to privacy leakage risk in some sensitive cases, thereby
impeding collaboration among organizations seeking to collectively
develop robust GAD models. Although federated learning offers
a promising solution, the prevalent non-IID problems and high
communication costs present significant challenges, particularly
pronounced in collaborations with graph data distributed among
different participants. To tackle these challenges, we propose an ef-
fective federated graph anomaly detection framework (FGAD). We
first introduce an anomaly generator to perturb the normal graphs
to be anomalous, and train a powerful anomaly detector by dis-
tinguishing generated anomalous graphs from normal ones. Then,
we leverage a student model to distill knowledge from the trained
anomaly detector (teacher model), which aims to maintain the per-
sonality of local models and alleviate the adverse impact of non-IID
problems. Moreover, we design an effective collaborative learning
mechanism that facilitates the personalization preservation of lo-
cal models and significantly reduces communication costs among
clients. Empirical results of the GAD tasks on non-IID graphs com-
pared with state-of-the-art baselines demonstrate the superiority
and efficiency of the proposed FGAD method.
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1 INTRODUCTION
Anomaly detection [3, 27] is a fundamental research problem in
machine learning, and it has been extensively explored in various
domains such as images [2, 15] and time-series data [1, 4, 20]. In
the real world, graph-structured data is commonly available due to
its exceptional ability to represent complicated relationship infor-
mation among entities [43]. This is particularly evident in domains
like social networks and medical applications. Consequently, graph
anomaly detection (GAD) [5, 24], which aims to identify graphs that
exhibit significant deviations from other normal graphs, has raised
broad attention in recent years. With the advancement of graph
neural networks (GNNs) [13, 37], GAD has made remarkable strides
and demonstrated promising performance in detecting anomalies
across many real-world scenarios with natural graph-structured
data, e.g., social networks, molecules, and bioinformatics.

In realistic collaborative efforts among different companies and
organizations, they attempt to share knowledge with each other in
order to more accurately detect anomalies. However, existing GAD
approaches [9, 23, 31, 40] typically involve a centralized model that
requires all participants to provide their own data for training a
global model, as shown in Figure 1(a). Although this centralized
training simplifies coordination, it introduces a critical privacy
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leakage risk. Graph data may encompass some sensitive informa-
tion that the participant is not willing to share, e.g., the private
relationship in social networks, which then hinders their collabora-
tions. Consequently, an urgent imperative emerges to investigate
approaches that facilitate collaboration between GAD models dis-
tributed to different participants while protecting their privacy.
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Figure 1: Overview of the centralized learning and federated
learning frameworks.

As the emerging technique in machine learning, federated learn-
ing (FL), as shown in Figure 1(b), enables the collaboration between
different participants with the consideration of privacy-preserving.
The clients in FL only need to share their network parameters with
the server rather than their local data, which prevents the leakage
of sensitive information in participants. Classical FL methods, such
as FedAvg [25] and FedProx [18], have become the paradigm of col-
laborative learning across various domains [14, 35]. To facilitate the
collaborative training of GNN models for graph data across clients,
federated graph learning (FGL) [8, 19, 41] has also been widely
studied in recent years. FGL methods [30, 36] integrate GNNs with
FL methods to collaboratively learn representations for complicated
graph data distributed in various clients, and have demonstrated
superiority in graph classification tasks. Therefore, an intuitive
approach to address the above issue is to integrate the existing
advancements in FL and FGL with general anomaly detection tech-
niques, e.g., deep one-class classification (DeepSVDD) [29].

However, this solution may encounter the following challenges:

(1) The graph data distributed in various clients often exhibits
significant heterogeneity and non-IID property [10, 36], e.g.,
containing different graph structures or feature dimensions.
These factors place a higher demand onmaintaining the validity
of the local models for their own data, e.g., personalization.

(2) It is difficult to learn a universal hypersphere as the decision
boundary for highly heterogeneous graph data under the fed-
erated learning setting. Besides, such non-IID graphs across
clients hardly conform to the assumption in DeepSVDD that
their latent distribution could follow a universal hypersphere.

(3) Existing collaborative learning mechanisms, e.g., FedAvg [25],
require transmitting all network parameters of each client in a
single communication round, which brings substantial commu-
nication costs in applications.

Those challenges naturally lead to a research question: Can we
design an FL-based GAD framework that facilitates more ef-
fective collaboration and achieves more accurate detection?

In this paper, we propose an effective federated graph anomaly
detection (FGAD) framework, as shown in Figure 2, to answer this
research question. To improve the anomaly detection capability in
the local model, we introduce an anomaly generator that perturbs
normal graphs to be anomalous, and train a classifier to identify
anomalies from normal graphs. The generated anomalous graphs
are encouraged to be diverse and resemble normal ones through
iterations, so that more robust decision boundaries can be learned
in a self-boosted manner. To alleviate the adverse impact of non-IID
problems, we propose to preserve the personalization of each client
by leveraging knowledge distillation. Specifically, we introduce a
student model to distill the knowledge from the trained classifier
(teacher model). The student model only takes the normal graphs as
the input, with the aim of aligning its predicted distributions with
that of the teacher model. Moreover, we further design an effective
collaborative learning mechanism. We let the student and teacher
models share the same backbone network to streamline the capacity
of local models. Besides, we engage only the parameters of the
student head rather than the entire model in collaborative learning,
which allows the teacher model to preserve the personalization of
a client. In this way, we not only alleviate the adverse impact of
non-IID property, but also reduce the communication costs between
clients and server during collaborative learning. The contributions
of this paper are summarized as follows:
• We investigate the challenging anomaly detection issue on non-
IID graphs distributed across various clients, and propose an
effective federated graph anomaly detection (FGAD) framework.

• We introduce a self-boosted distillation module, which not only
promotes the detecting capability by identifying self-generated
anomalies, but also maintains the personalization of local models
from knowledge distillation to alleviate non-IID problems.

• We propose an effective collaborative learning mechanism that
streamlines the capacity of local models and reduces communi-
cation costs with the server.

• We establish a comprehensive set of baselines for federated graph
anomaly detection. Extensive experiments also validate the ef-
fectiveness of the proposed FGAD method.

2 RELATEDWORKS
2.1 Graph Anomaly Detection
Graph anomaly detection (GAD) [24] refers to detecting abnormal
graphs that significantly differ from other normal ones, which have
received growing attention in recent years owing to the ubiqui-
tous prevalence of graph-structured data in real-world scenarios,
such as social networks [22]. There are many works that advance
the research on GAD. For instance, Zhao et al. [42] investigated
graph-level anomaly detection issues by integrating graph iso-
morphism network (GIN) [37] with deep one-class classification
(DeepSVDD) [29]. Qiu et al. [28] leveraged neural transformation
learning to develop a more robust GAD model to overcome the
performance flip issue. Ma et al. [23] utilized knowledge distillation
to capture more comprehensive normal patterns from the global
and local views for detecting graph anomalies.
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Figure 2: Overview of the FGAD framework. Note that the teacher model utilizes both normal and generated anomalous graphs
for training an anomaly detector, while the student model only inputs normal graphs for the distillation of normal patterns.

Although these GADmethods have achieved remarkable success,
they primarily rely on centralized training paradigms. Nevertheless,
in real-world collaborative scenarios, the graph data is often dis-
tributed across various clients, which necessitates the transmission
of local graph data to a central server during practical collabora-
tions. Unfortunately, this process can potentially expose sensitive
information and pose severe privacy risks. Additionally, the inher-
ent non-IID property in the graph data distributed across diverse
clients presents yet another formidable challenge. Consequently,
the pursuit of effective solutions to address these challenges remains
an open research problem.

2.2 Federated Graph Learning
Federated learning (FL) approaches [10, 17, 39], such as FedAvg [25],
FedProx [18], provide a promising solution for collaboratively train-
ing models with data distributed in different clients, while pre-
serving their privacy. In FL, clients only share their network pa-
rameters rather than data with the central server, which mitigates
the privacy leakage risk and enables clients to share and leverage
knowledge from others. As an emerging technique, FL has not
only made remarkable advancements in image [6, 16, 38] and time
series data [21, 33], but also raised increasing attention to graph
data [34, 41], where collaborative efforts are significantly more
challenging due to the complex structural information and hetero-
geneous characteristic of graphs compared to other data types.

Federated graph learning (FGL) [41] aims to facilitate the col-
laboration of GNNs distributed in multiple remote clients to meet
the requirement of handling complicated non-IID graph data that
widely exist in many real-world scenarios, e.g., social networks,
medical, and biological data. For example, Xie et al. [36] studied the
federated learning issue on non-IID graphs by integrating the clus-
tered federated learning with graph isomorphism network (GIN),
which achieves effective collaborations for distributed GINs. Tan et
al. [30] designed a structural knowledge-sharing mechanism to fa-
cilitate the federated graph learning process. However, existing FGL
methods have primarily been validated for graph classification tasks,

and their effectiveness in addressing the intricate unsupervised task
of graph anomaly detection remains an area of ongoing exploration.
While it is possible to extend these FL/FGL [18, 25, 30, 36] methods
to address GAD tasks by integrating them with classical solutions
like DeepSVDD [24, 29], it is imperative to acknowledge some sig-
nificant challenges, e.g., the adverse impact of the non-IID problem
across different clients and the communication costs of transmitting
complex GNN model parameters during collaborative learning.

3 METHODOLOGY
3.1 Preliminary and Problem Formulation

Notation: Let 𝐷 = {𝐺1, . . . ,𝐺𝑁 } denotes a graph dataset which
consists of 𝑁 graphs, and each graph 𝐺𝑖 = {𝑉𝑖 , 𝐸𝑖 } in the graph
set comprises a node set 𝑉𝑖 and edge set 𝐸𝑖 . Typically, assume the
number of nodes in a graph 𝐺𝑖 is 𝑛𝑖 = |𝑉𝑖 |, an adjacency matrix
A𝑖 ∈ {0, 1}𝑛𝑖×𝑛𝑖 is used to represent the topology of graph 𝐺𝑖 .
Besides, let x𝑣 ∈ R𝑑 denotes the attribute vector for node 𝑣 ∈ 𝑉𝑖 ,
X𝑖 ∈ R𝑛𝑖×𝑑 is used to represent the attribute matrix of graph 𝐺𝑖 .

GraphNeuralNetworks: Graph neural networks (GNNs), which
iteratively learn representations with neighborhood aggregation
andmessage propagation, is a widely used paradigm of learning rep-
resentation for graph-structured data in many downstream tasks. In
this paper, we leverage the graph isomorphism network (GIN) [37],
a widely used GNN backbone, to learn graph representation for
anomaly detection tasks. Generally, in each layer of a GIN, the node
representation is updated by aggregating its neighborhood informa-
tion. For instance, in the 𝑘-th layer of GIN, the learned aggregated
features a(𝑘 )𝑣 for node 𝑣 can be formulated as:

a(𝑘 )𝑣 = AGGREGATE({h(𝑘−1) (𝑢), 𝑢 ∈ Ñ (𝑣)}), (1)

where AGGREGATE(·) indicates the aggregation function, and
Ñ (𝑣) represents the neighbor node set of node 𝑣 . Then, the node
feature h(𝑘 )𝑣 of node 𝑣 in the 𝑘-th layer is obtained by combing the
node feature learned in the (𝑘 − 1)-th layer with the aggregated
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feature, i.e.:

h(𝑘 )𝑣 = 𝜎 (COMBINE(h(𝑘−1)
𝑣 , a(𝑘 )𝑣 )), (2)

where 𝜎 (·) denotes the activation function, e.g., LeakyReLU. Partic-
ularly, the initial feature h(0)𝑣 for node 𝑣 is set as h(0)𝑣 = x𝑣 . Conse-
quently, we can obtain the representation for a graph𝐺 based on
the learned features of all nodes within 𝐺 as follows:

h𝐺 = R(CONCAT(h(𝑘 )𝑣 , 𝑘 ∈ {1, . . . , 𝐾}), 𝑣 ∈ 𝐺), (3)

where 𝐾 is the number of GIN layers, and CONCAT(·) denotes the
concatenate operation that stacks the graph representation learned
across all 𝐾 layers. R(·) denotes the readout function that obtains
the graph-level representation by aggregating the node features
within a graph, and we choose sum-readout in this paper. Note that
for convenience, we use GIN(·) to simply represent a GIN model
containing the above three operations, in the following sections.

Problem Formulation: The objective of the GAD under the FL
setup is to facilitate collaboration among clients, which allows each
participant to enhance their GAD models by leveraging knowledge
from others without exposing private data. Given 𝐶 clients, the
collective graph dataset is denoted as 𝐷 = {𝐷1, . . . , 𝐷𝐶 }, where
each client possesses its own graph set 𝐷𝑐 . A prevalent paradigm
in GAD [24] is that all graphs within the client, i.e., ∀𝐺𝑖 ∈ 𝐷𝑐 , are
deemed as “normal”. The model is trained to capture this normality
so that the trained model can distinguish an “anomalous" graph
�̃� deviates significantly from the distribution of 𝐷𝑐 by some pre-
defined assumptions, e.g., the hypersphere decision boundary in
DeepSVDD [29]. Conversely, in this paper, we attempt to develop
a classifier-based anomaly detector, which can adaptively learn
decision boundaries rather than relying on the strong assumption
of the shape of the latent distribution. This can be regarded as
solving the following problem:

minimize
w(1) ,...,w(𝐶 )

1
𝐶

𝐶∑︁
𝑐=1

|𝐷𝑐 |
|𝐷 | (ℓ𝑐 (𝑦, 𝑓w(𝑐 ) (𝐺)) + ℓ𝑐 (𝑦, 𝑓w(𝑐 ) (�̃�))), (4)

where |𝐷 | and |𝐷𝑐 | denote the total number of graphs and that
of in 𝑐-th client. {𝐺 ;𝑦} represents the normal graph labeled with
𝑦 = 1, and {�̃�,𝑦} represents the anomalous graph labeled with
𝑦 = 0. ℓ𝑐 (·) denotes the local loss function of 𝑐-th client, e.g., binary
cross-entropy loss. 𝑓w(𝑐 ) (·) is the GIN-based neural network of 𝑐-
th client, which is parameterized by w(𝑐 ) . However, tackling this
problem presents the following challenges:
1) GAD is generally an unsupervised task that only normal graph

{𝐺 ;𝑦} is accessible. Thus, how to produce high-quality anoma-
lous graph {�̃� ;𝑦} for training each local anomaly detector?

2) In the context of FL-based GAD, how to alleviate the adverse
impact of the non-IID property that is prevalent in the graph
data across clients?

3) Transmitting all network parameters following conventional FL
methods may limit the scalability given the complexity of GIN.
Therefore, how to reduce communication costs in collaborative
learning while maintaining the validity of local models?

3.2 Self-boosted Graph Knowledge Distillation
The first challenge raises the demand to produce anomalous graphs
without using any supervised information. To this end, we propose a

graph anomaly generator denoted as Gw𝑎
(·) to generate anomalous

graphs by perturbing the graph structure of normal graph 𝐺 . For
each client, we aim to generate an anomalous graph set �̃�𝑐 =

{X𝑐 , Ã𝑐 } in an unsupervised manner by feeding with normal graph
set 𝐷𝑐 . To ensure diversity in the generated anomalous graphs, we
leverage variational graph auto-encoder (VGAE) [12] to build the
anomaly generator. Specifically, we first learn a latent Gaussian
distribution N(𝝁𝑐 ,𝝈2

𝑐 ), which can be determined as follows:

𝝁𝑐 = GIN𝝁 (X𝑐 ,A𝑐 ),𝝈𝑐 = GIN𝝈 (X𝑐 ,A𝑐 ), (5)

where GIN𝝁 (·) and GIN𝝈 (·) denotes two distinct GINs in anomaly
generator, and 𝝁𝑐 and 𝝈𝑐 explicitly parameterize the following
inference model:

𝑞(Z̃𝑐 |X𝑐 ,A𝑐 ) =
|𝐷𝑐 |∏
𝑖=1

𝑞(Z(𝑖 )
𝑐 |X𝑐 ,A𝑐 ), (6)

where 𝑞(Z̃(𝑖 )
𝑐 |X𝑐 ,A𝑐 ) = N(Z̃(𝑖 )

𝑐 |𝝁 (𝑖 )
𝑐 , diag(𝝈 (𝑖 )

𝑐 )), and it allows us
to sample from a wide range in the latent space thereby facilitating
the diverse anomalous graph generation. Here, we employ the
reparametrization trick [11] to address the obstacle of gradient
propagation in the sample operation. Consequently, the generated
adjacency matrix can be calculated by:

Ã𝑐 = T (Z̃⊤𝑐 Z̃𝑐 ), Z̃𝑐 = 𝝁𝑐 + 𝜖𝝈𝑐 , 𝜖 ∼ N(0, 1), (7)

where T : R→ [0, 1] represents the element-wise transformation
operations such as Sigmoid(·), and 𝜖 represents a random Gaussian
noise that follows the standard normal distribution N(0, 1).

Intuitively, allowing the generated graphs to closely resemble
normal graphs while remaining as anomalies is beneficial in train-
ing a robust and powerful anomaly detector, as it forces the model to
distinguish those subtle deviations from the normal patterns. There-
fore, we propose to optimize the anomaly generator by minimizing
the following objective:

ℓ𝑐g (A𝑐 , Ã𝑐 ) = −
∑︁
𝑖, 𝑗

(A𝑖 𝑗
𝑐 log(Ã𝑖 𝑗

𝑐 ) + (1 − A𝑖 𝑗
𝑐 ) log(1 − Ã𝑖 𝑗

𝑐 )), (8)

where ℓ𝑐g denotes the binary-cross entropy loss function. Subse-
quently, we can train an anomaly detector with the normal and
generated anomalous graph sets for the local client as follows:

ℓ𝑐ad = 𝑙ce (𝑦𝑐 , Proj(𝑓w𝑔
(X𝑐 ,A𝑐 ))) + 𝑙ce (𝑦𝑐 , Proj(𝑓w𝑔

(X𝑐 , Ã𝑐 ))), (9)

where Ã𝑐 = Gw𝑎
(X𝑐 ,A𝑐 ), 𝑙ce (·) is the cross-entropy loss, and 𝑓w𝑔

(·)
denotes the GIN backbone that learns graph representation by
feeding with graph data. Proj(·) is the MLP-based projection head
that maps the graph representation learned from 𝑓w𝑔

(·) into the
predicted logits. Note that we simply set the label of the normal
graph 𝑦𝑐 = 1, and the generated anomalous graph as 𝑦𝑐 = 0.

Hence, we can train an anomaly detector in an unsupervised
manner by minimizing the following objective function:

ℓpt =
1
𝐶

𝐶∑︁
𝑐=1

|𝐷𝑐 |
|𝐷 | (ℓ

𝑐
ad + ℓ𝑐g ), (10)

where ℓ𝑐g attempts to generate anomalous graphs that closely resem-
ble normal ones, while ℓ𝑐ad aims to identify those generated anoma-
lous graphs. Therefore, we produce diverse anomalous graphs for
learning a powerful anomaly detector in such a self-boosted style,
and the two objectives mutually improve each other during training.
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However, in the context of federated learning, the graph data
across different clients is often heterogeneous and exhibits non-IID
property. Such characteristics can potentially affect the anomaly
detection performance of local models, i.e., the second challenge.
To alleviate the adverse impact of the non-IID problem, we propose
a graph knowledge distillation framework, which is designed to
preserve the personalization of the local model during collaborative
learning. Specifically, we regard the previously pre-trained anomaly
detector as the “teacher” model, and introduce a “student” model
that aims to distill the knowledge from the teacher model and
achieve collaboration between clients.

The network architecture of the student model is similar to the
teacher model, which consists of a GIN backbone and a projection
head. Since the purpose of the student model is to mimic the pre-
dictions of the teacher model for normal data, only normal graphs
are considered in the knowledge distillation. The predicted logits
of the teacher and student models are computed as follows:

Q𝑐,t = Projt |w𝑡
(𝑓w𝑔

(X𝑐 ,A𝑐 )), Q𝑐,s = Projs |w𝑠
(𝑓w𝑔′ (X𝑐 ,A𝑐 )), (11)

where 𝑓w𝑔
(·), Projt |w𝑡

(·) and 𝑓w𝑔′ (·), Projs |w𝑠
(·) are the backbone

networks and projection heads of teacher and student models re-
spectively. Note that Projt |w𝑡

(·) is actually the same as the projec-
tion head Proj(·) in Eq. (9). Subsequently, the student model distills
the knowledge from the teacher model by matching its predicted
logits with those of the teacher model, described as follows:

ℓ𝑐kd =
1

|𝐷𝑐 |
∑︁
𝑖∈𝐷𝑐

𝐾𝐿(softmax(Q(𝑖 )
𝑐,t /𝜏), softmax(Q(𝑖 )

𝑐,s /𝜏)), (12)

where 𝐾𝐿(·, ·) denotes the Kullback-Leibler divergence, which is
applied to measure the discrepancy between the distribution of the
predicted logits from teacher and student models. softmax(·) is the
softmax function, i.e., softmax(𝑞𝑖/𝜏) =

exp(𝑞𝑖/𝜏 )∑
𝑗 exp(𝑞 𝑗 /𝜏 ) , and 𝜏 is the

temperature factor that controls the smoothness of the distillation.

3.3 Parameter-efficient Collaborative Learning
Based on the design of the self-boosted graph knowledge distillation
module, the objective function of all clients is defined as follows:

Ltotal =
1
𝐶

𝐶∑︁
𝑐=1

|𝐷𝑐 |
|𝐷 | (ℓ

𝑐
ad + 𝜆ℓ𝑐g + 𝛾ℓ𝑐kd), (13)

where 𝜆 and 𝛾 are the two trade-off parameters. In federated learn-
ing, let W(𝑐 ) = {w(𝑐 )

𝑎 ,w(𝑐 )
𝑔 ,w(𝑐 )

𝑔′ ,w
(𝑐 )
𝑡 ,w(𝑐 )

𝑠 } denotes the parame-
ter set of the 𝑐-th client, the conventional solution achieves collabo-
ration by uploading the network parameters to the server and then
distribute the aggregated network parameters to each client. How-
ever, this solution presents several problems. First, the high param-
eter complexity of a GIN-based backbone can limit the scalability
of the model during the parameter aggregation process. Second,
the transmission of all network parameters may introduce non-IID
problems, and affect the performance of local models trained on
different graph data across clients.

To address these issues, we propose an effective collaborative
learning mechanism in this paper, which is described in Figure 2.
Specifically, We let the teacher and student models share the same

GIN backbone for learning graph representation, i.e.,

Z𝑐 = 𝑓w𝑔
(X𝑐 ,A𝑐 ) = 𝑓w𝑔′ (X𝑐 ,A𝑐 ), (14)

where Z𝑐 denotes the learned graph representation that is shared
as the input to the projection heads of teacher and student. This
operation not only reduces the complexity of the local model, but
also simplifies the knowledge distillation of the student model.
Then we only upload the parameter setw(𝑐 )

𝑠 of the student head for
collaboration instead of uploading all the network parameters, i.e.,
the parameter aggregation in the server is formalized as follows:

w̄𝑠 =

𝐶∑︁
𝑐=1

|𝐷𝑐 |
|𝐷 | w

(𝑐 )
𝑠 , (15)

where w̄𝑠 denotes the aggregated parameters in the server. The
proposed collaborative learning mechanism not only streamlines
the capacity of local models, but also significantly reduces the com-
munication costs, which addresses the third challenge. To facilitate
the understanding of the proposed FGAD method, we summarize
its detailed training process in Algorithm 1. The collaboration be-
tween clients via the student model is performed in the following
two steps:
• Each client performs graph knowledge distillation independently,
updating its network parameters, and uploads the network pa-
rameters of the student head to the server.

• The server then aggregates the network parameters following
Eq. 15, and distributes the aggregated network parameters to
each client.

Algorithm 1 Training process of the proposed FGAD

Input: Graph set 𝐷 = {𝐷𝑐 }𝐶𝑐=1, number of clients 𝐶 , number of
GNN layers 𝐾 , learning rate 𝛼 , total epochs T .

Output: The overall graph anomaly detection performance.
1: Initialize the parameter sets {W(𝑐 ) }𝐶

𝑐=1 for each local model;
2: Pretrain the local model in each client with Eq. (10);
3: while not converge do
4: for 𝑡 = 1, 2, . . . ,T do
5: for 𝑐 = 1, . . . ,𝐶 do
6: Generate anomalous graph set D̃ with Eqs. (5), (6), (7);
7: Compute loss items ℓ𝑐ad, ℓ

𝑐
g , ℓ𝑐kd with Eq. (8), (9), (12);

8: end for
9: Back-propagation and update each local model via mini-

mizing Eq. (13);
10: end for
11: Upload the parameter sets {w(𝑐 )

𝑠 }𝐶
𝑐=1 of student model in

each client to the server;
12: Compute aggregated network parameters w̄𝑠 with collabo-

rative learning following Eq. (15);
13: Distribute parameter set w̄𝑠 to the local model of each client;
14: end while
15: Evaluate the anomaly detection performance in each client and

aggregate their results;
16: return The overall graph anomaly detection performance.
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4 EXPERIMENT
4.1 Experimental Setup

Datasets. We evaluate the performance of FL-based graph anom-
aly detection on non-IID graphs through two distinct experimental
setups: (1) single-dataset and (2) multi-dataset scenarios.
• Single-dataset: we distribute a single dataset across multiple
clients, each of which possesses a unique subset of the dataset.
This setup allows us to assess the effectiveness when clients
collaborate on a shared dataset. We employ three social network
datasets including IMDB-BINARY, COLLAB, and IMDB-MULTI
to conduct this experiment.

• Multi-dataset: we broaden our evaluation by considering vari-
ous datasets distributed in multiple clients and each of them holds
a specific dataset. We consider not only social network data (SO-
CIALNET) but also expand to include molecular (MOLECULES),
biochemical (BIOCHEM), and mix data types (MIX). This allows
us to thoroughly assess FL-based graph anomaly detection across
a spectrum of data types and collaboration scenarios.

The information and construction details of each dataset are illus-
trated in Appendix A.1.

Baseline Methods. We compare the proposed FGAD method
with several state-of-the-art baseline methods. We include two fed-
erated learning methods: FedAvg [25] and FedProx [18], as well as
two federated graph learning methods: GCFL [36] and FedStar [30].
Note that in order to adapt these baseline methods to the graph
anomaly detection task, we integrate them with DeepSVDD [29] to
construct an end-to-end graph anomaly detection model. Besides,
we regard the self-training strategy without the FL setting as one of
the baselines. To ensure a fair comparison with FGAD, we employ
the same GIN network structure as FGAD in all baseline methods.

Implementation Details. We use GIN [37] as the graph rep-
resentation learning backbone for FGAD and all baselines. The
number of GIN layer 𝐾 is set to 3, and the dimensions of the hidden
layer of GIN and projection head of student and teacher models
are all set to 64. We use Adam [11] as the optimizer and fixed the
learning rate 𝛼 = 0.001. For all datasets, we first pretrain the anom-
aly generator and teacher model for 10 epochs, and then jointly
train with knowledge distillation and collaborative learning for 200
epochs. For more training details, please refer to Appendix A.2.

Evaluation Metrics: We use Area Under the Curve (AUC) and
Area Under the Precision-Recall Curve (AUPRC) as the evaluation
metrics in the experiment. Each method is executed 10 times to
report their means and standard deviations.

4.2 Experimental Results
In this section, we conduct comprehensive experiments including
two types of non-IID graph scenarios, i.e., the single-dataset and
multi-dataset distributed in multiple clients, to validate the effec-
tiveness of the proposed method. Table 1 and Table 2 show the
experimental results of FGAD and several state-of-the-art baselines,
from which we can have the following observations.
• Comparison: In the single-dataset experiment, FGAD demon-
strates a remarkable advantage over all baseline methods. For

instance, in the IMDB-BINARY dataset, FGAD achieves signifi-
cant performance improvement, exceeding Self-train by 23.39%
in AUC and 19.17% in AUPRC. It also significantly surpasses
classical FedAvg and FedProx. Furthermore, FGAD outperforms
the state-of-the-art baselines GCFL and FedStar by a substantial
7.99% and 10.21% in AUC, respectively. Similar trends are evi-
dent across other benchmarks, demonstrating the effectiveness
of FGAD. In the multi-dataset experiment, the GAD task is more
challenging as the non-IID problem in it is more severe compared
to the single-dataset scenario. Nevertheless, FGAD still exhibits
outstanding performance compared to other baselines. For exam-
ple, on MOLECULES, FGAD outperforms the runner-up FedStar
by 6% in AUC and 19.46% in AUPRC. Besides, it achieves more
than a 10.00% performance improvement compared to other base-
line methods. More importantly, we can observe from Table 1
that FGAD significantly reduces communication costs during
collaborative learning compared to other baseline methods.

• Discussion: The Self-train strategy discards collaborative train-
ing and fails to leverage the knowledge from other clients to learn
more robust local GAD models. FedAvg and FedProx require
the transmission of all network parameters of the local models,
which introduces severe non-IID problems in collaborative learn-
ing. Consequently, these three aforementioned baselines yield
suboptimal performance in most cases. Although GCFL incorpo-
rates a specific design to alleviate non-IID challenges, such as
utilizing clustered FL for collaborative learning, it still necessi-
tates the transmission of all network parameters and does not
effectively address non-IID problems, as validated by the experi-
mental results. On the other hand, FedStar achieves runner-up
performance in most cases, which may primarily be attributed
to the introduced structural embedding that helps to preserve
the personalization of local models. Compared with the baseline
methods, FGAD considers enhancing the detecting capability of
local models in a self-boosted manner, and introduces an effec-
tive collaborative learning mechanism by leveraging knowledge
distillation. This allows FGAD to learn more powerful local GAD
models, mitigate the adverse effects of non-IID problems, and
reduce communication costs among clients.

4.3 Embedding Visualization
We employ t-SNE [32] to visualize the learned embedding for intu-
itive comparison. Figure 3 shows the embedding visualization for
AIDS, one of the constituents of MOLECULES. We include results
from FedAvg, GCFL, and FedStar for a comprehensive analysis. It’s
evident that the learned embeddings by FedAvg and GCFL exhibit
poor discriminative properties, with both normal and anomalous
graphs appearing entangled in the latent space. Although the visu-
alization result of FedStar shows some separation between normal
and anomalous graphs, it remains blurred decision boundaries. Con-
versely, the learned embeddings of FGAD are clearly more discrim-
inative compared to the other baseline methods. The visualization
of FGAD reveals distinct boundaries between the embeddings of
normal and anomalous graphs, supporting its effectiveness.
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Table 1: Anomaly detection performance (mean(%) ± std(%)) under the single-dataset setting. Note that the best performance is
marked in Bold, and the last column shows the number of transmitted parameters in collaborative learning.

Methods IMDB-BINARY COLLAB IMDB-MULTI # Parameters
AUC AUPRC AUC AUPRC AUC AUPRC

Self-train 41.58±1.34 47.43±1.39 46.96±1.80 30.87±0.62 52.39±1.31 32.74±0.60 N/A

FedAvg [25] 40.96±3.44 48.24±2.41 49.60±0.45 30.69±0.50 49.11±1.46 36.13±1.54 5,370,880
FedProx [18] 39.62±2.36 46.74±1.24 49.56±0.50 31.40±0.50 52.16±1.75 36.13±1.54 5,370,880

GCFL [36] 56.98±5.56 59.68±3.37 48.93±1.02 30.84±0.36 49.44±2.95 34.87±0.68 10,741,760
FedStar [30] 54.76±1.28 56.49±0.86 51.89±0.33 36.89±0.43 58.28±0.53 39.97±1.22 416,000

FGAD 64.97±0.52 66.60±1.12 55.08±1.85 66.67±0.00 60.51±1.18 66.82±0.14 21,130

Table 2: Anomaly detection performance (mean(%) ± std(%)) under the multi-dataset setting. Note that the best performance is
marked in Bold.

Methods MOLECULES BIOCHEM SOCIALNET MIX

AUC AUPRC AUC AUPRC AUC AUPRC AUC AUPRC

Self-train 61.26±2.91 61.31±1.91 54.54±0.99 52.29±0.40 50.31±1.55 39.96±1.58 51.94±0.42 47.65±0.64
FedAvg [25] 54.41±3.21 55.55±3.23 40.88±1.36 51.63±1.13 48.21±1.02 38.29±1.29 47.96±0.61 44.89±0.68
FedProx [18] 57.93±2.14 58.72±2.25 46.04±0.49 51.57±0.80 47.26±0.10 37.23±0.92 46.79±0.63 44.19±0.29
GCFL [36] 45.67±1.33 51.96±0.79 41.49±0.30 52.23±0.65 47.59±0.95 37.53±0.93 49.58±0.50 45.37±0.69
FedStar [30] 56.15±0.92 59.73±1.21 47.80±0.48 56.48±0.19 53.79±2.03 36.40±1.11 50.53±1.11 45.83±0.41
FGAD 62.15±0.69 79.19±0.49 58.09±0.85 59.04±0.54 54.86±0.29 56.88±0.98 58.14±0.36 52.03±0.63
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Figure 3: Embedding visualization of the proposed FGAD
compared with several baselines using t-SNE. Note that the
data point marked in yellow, red, and green correspond to
the normal graph (test), anomalous graph, and normal graph
(train), respectively.

Table 3: Ablation study results (mean(%) ± std(%)) of FGAD
and its three variants.

Methods IMDB-MULTI MOLECULES

AUC AUPRC AUC AUPRC

FGAD_v1 56.67±1.72 64.91±1.85 57.98±2.78 75.80±0.09
FGAD_v2 56.69±1.22 65.98±0.90 59.41±2.22 77.32±1.02
FGAD_v3 55.23±3.54 61.02±2.68 55.58±4.56 66.73±0.80
FGAD 60.51±1.18 66.82±0.14 62.15±0.69 79.19±0.49

4.4 Ablation Study
To validate the effectiveness of each component in the proposed
FGAD method, we derive three variants from FGAD and perform a
systematic evaluation. Specifically, we illustrate the construction
details of the three variants as follows:

• FGAD_v1: This variant only considers local training in each
client, and abandons the collaborative learning between clients.

• FGAD_v2: This variant drops the proposed collaborative learn-
ing mechanism, and follows the parameter aggregation mecha-
nism of the classical FedAvg method.

• FGAD_v3: This variant drops the knowledge distillation mod-
ule, i.e., removes the student model and only takes the classifier
(teacher model) in collaboration.
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(b) MOLECULES

(a) IMDB-BINARY

Figure 4: Parameter analysis of 𝜆 and 𝛾 on IMDB-BINARY
and MOLECULES. Note that the values of 𝜆 and 𝛾 range from
[1𝑒−4, . . . , 1𝑒3].

Table 3 shows the experimental results of FGAD and its three vari-
ants on two datasets, yielding the following observations. FGAD_v1
demonstrates a performance decline compared to FGAD, which
is primarily due to the fact that FGAD_v1 exclusively focuses on
local training, neglecting collaboration with other clients. Conse-
quently, it fails to leverage the comprehensive knowledge of other
clients. Secondly, when we substitute the proposed collaborative
learning mechanism with the classical FedAvg, there is also a no-
ticeable performance decline. This can be attributed to the potential
susceptibility of parameter transmission in FedAvg to the adverse
effects of non-IID problems. Third, FGAD consistently outperforms
FGAD_v3 by a significant margin. This observation reveals the cru-
cial role of the self-boosted distillation module in maintaining the
personalization of local models within each client, which effectively
mitigates the non-IID problems. Overall, the ablation study results
fully support the rationale and the effectiveness of each component
proposed in FGAD.

4.5 Parameter Analysis
4.5.1 Impact of Hyper-Parameters 𝜆 and 𝛾 . The objective func-
tion of the proposed FGAD method contains two main hyper-
parameters, i.e., 𝜆 and 𝛾 . In this section, we conduct an analysis of
the impact of these two hyper-parameters on anomaly detection
performance. Specifically, we vary the values of 𝜆 and 𝛾 within the
range of [1𝑒−3, . . . , 1𝑒4] and present the experimental results on
IMDB-BINARY and MOLECULES datasets in Figure 4. From the ob-
servations shown in the figure, we draw several conclusions. Firstly,
FGAD tends to yield suboptimal performance when the values of
𝜆 and 𝛾 are set too low, e.g., 1𝑒−4 and 1𝑒−3. This emphasizes the
significant role of both loss terms in the FGAD framework and sug-
gests their effectiveness. Secondly, we can observe that excessively
high values of 𝜆 and 𝛾 also have an adverse impact on performance,

(a) (b)

Figure 5: Average performance and distribution of variance
between clients of FedAvg and FGAD. Note that the client
number is set to [2, . . . , 10].

(a) (b)

Figure 6: Average performance with standard deviation un-
der different numbers of GIN layers on IMDB-BINARY and
MOLECULES datasets. Note that the number of GIN layers is
set to [1, . . . , 10].

because they may obscure the primary objective of optimizing the
anomaly detector. Finally, it is worth noting that FGAD exhibits
relatively stable performance both in AUC and AUPRC across a
wide range of 𝜆 and 𝛾 values, demonstrating its robustness.

4.5.2 Impact of Client Numbers. The number of clients 𝐶 is
another hyper-parameter in the FGAD framework, and its impact
on the performance is crucial for assessing the scalability of client
numbers. Therefore, we vary the number of clients 𝐶 within the
range of [2, . . . , 10] and conduct the experiment. The results on
IMDB-BINARY are reported in Figure 5. Note that we also include
FedAvg as a baseline method for comparative analysis. It can be
observed that FGAD consistently achieves remarkable performance
improvement compared to FedAvg in all cases, and exhibits sta-
bility against changes in the number of clients. However, when
the number of clients increases to certain large values, the average
performance shows a certain degradation, and the performance
variance between different clients becomes more significant both in
FGAD and FedAvg. This is primarily due to the gradually increasing
discrepancy between the graph data distributed across different
clients, which causes more severe non-IID problems. Nevertheless,
FGAD still exhibits relatively smaller performance fluctuations com-
pared with FedAvg, which fully demonstrates the scalability of the
proposed FGAD method.

4.5.3 Impact of GIN Layers. We delve into the impact of the
number of GIN layers 𝐾 on the anomaly detection performance
within the proposed FGAD method. The parameter 𝐾 plays a piv-
otal role in determining the extent to which the model explores
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neighborhood information and the overall complexity of FGAD. We
systematically analyze its impact by varying the 𝐾 within the range
of [1, . . . , 10] and conduct a series of experiments. Figure 6 reports
the experimental results on the IMDB-BINARY and MOLECULES
datasets, from which we have the following observations. First, a
certain depth of GIN is beneficial to fully leverage the structural in-
formation of graph data for learning powerful GAD models, which
could be verified from the observed performance improvement.
Second, when the number of GIN layers continues to increase, the
observed performance improvements become increasingly mar-
ginal or even exhibit slight diminishment. This trend indicates that
a moderate number of GIN layers, e.g., 3, is sufficient to effectively
leverage the neighborhood information within graphs. Third, we
can observe from the overall experimental results that the perfor-
mance remains relatively stable under the variation of 𝐾 , which
demonstrates the robustness of FGAD.

5 CONCLUSION
In this paper, we study a challenging GAD problem with non-IID
graph data distributed across multiple clients, and propose an effec-
tive federated graph anomaly detection (FGAD) method to tackle
this issue. To enhance the detecting capability of local models, we
propose to train a classifier in a self-boosted manner by distin-
guishing the normal and anomalous graphs generated from an
anomaly generator. Besides, to alleviate the adverse impact of non-
IID problems among clients, we introduce a student model to distill
knowledge from the classifier (teacher model), and engage only
the student model in collaborative learning, so that the personal-
ization of local models could be preserved. Moreover, we improve
the collaborative learning mechanism that streamlines the capac-
ity of local models and reduces the communication costs during
collaborative learning. Comprehensive experiments under various
data types and scenarios compared with state-of-the-art baselines
demonstrate the superiority of the proposed FGAD method. We
believe that this work would pave the way for subsequent studies
on collaborative GAD under the FL setting in the future.
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A APPENDIX
The appendix includes the following content:
(1) Detailed description of graph benchmarks used in experiments.
(2) Detailed experimental settings.
(3) Theoretical and empirical complexity analysis.
(4) Parameter analysis of latent dimensions.
(5) Justification of the backbone sharing strategy.

A.1 Detailed Description of Graph Benchmarks
In this section, we supplement the detailed description for all the
graph benchmarks used in our experiment, including the num-
ber of graphs, the average node numbers and edge numbers, and
the classes. Table 4 summarizes the information on graph bench-
marks used in the experiment. Specifically, in the single-dataset
experiment, we use three social network benchmarks including
IMDB-BINARY, COLLAB, and IMDB-MULTI. In the multi-dataset
experiment, we construct four benchmarks by integrating different
types of graph data, e.g., molecules, biological, and social network
data. The details are illustrated as follows:
• MOLECULES:This benchmark includesmultiplemolecule datasets,
e.g., MUTAG, DHFR, PTC_MR, BZR, COX2, AIDS, and NCI1.

• BIOCHEM: This benchmark is a cross-domain dataset including
datasets in MOLECULE, and additional biological datasets, e.g.,
ENZYMES, PROTEINS, and DD.

• SOCIALNET: This benchmark includes multiple social network
datasets, e.g., IMDB-BINARY, COLLAB and IMDB-MULTI.

• MIX: This benchmark contains all datasets from three domains,
i.e., molecular, biological, and social network, in Table 4.

Note that we regard the graph in the first class of each dataset
as the normal graph, and the graphs in other classes as anoma-
lous graphs. All graph benchmarks used in this paper source from
TUDataset [26], a publicly available graph benchmark database1.

A.2 Detailed Experimental Settings
In this section, we supplement more details of the experimental
settings in the paper, including the network structure, trade-off
parameter settings, training details, baseline settings, etc.
• Network Structure: We employ a 3-layer GIN [37] as the back-
bone network for our method, with the aggregated dimension in
each layer set to 64. In addition, we adopt the 4-layer and 3-layer
fully connected networks for the teacher head and student head,
respectively. The network structure of the teacher head is set
to 256-192-128-64-2, while for the student head is 192-128-64-2.
Moreover, we will open-source the code of FGAD for details and
reproducibility.

• Data Split: For all datasets, we regard the graphs in the first class
as normal and graphs in other classes as anomalous. We allocate
80% of the normal graphs data for training, and subsequently
construct the testing data by combining the remaining normal
data with an equal number of anomalous graphs.

• Training Details:We fix the batch size as 64 for all experiments
and use Adam [11] as the optimizer with a fixed learning rate 𝛼 =

0.001. We first pre-train each local model excluding the student
network and knowledge distillation module for 10 epochs. Then

1https://chrsmrrs.github.io/datasets/docs/datasets/
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Table 4: Detailed information of the datasets used in the experiment.

Dataset Name #Graphs #Average Nodes #Average Edges #Graph Classes Data Type

IMDB-BINARY 1,000 19.77 96.53 2 Social Network
COLLAB 5,000 74.49 2,457.78 3 Social Network
IMDB-MULTI 1,500 13.00 65.94 3 Social Network

MUTAG 188 17.93 19.79 2 Molecule
DHFR 756 42.43 44.54 2 Molecule
PTC_MR 344 14.29 14.69 2 Molecule
BZR 405 35.75 38.36 2 Molecule
COX2 467 41.22 43.45 2 Molecule
AIDS 2,000 15.69 16.20 2 Molecule
NCI1 4,110 29.87 32.30 2 Molecule

ENZYMES 600 32.63 62.14 6 Biology
PROTEINS 1,113 39.06 72.82 2 Biology
DD 1,178 284.32 715.66 2 Biology

we jointly train the whole network with collaborative learning
for 200 epochs.

• Trade-off Parameter Settings: The objective function of FGAD
contains two trade-off parameters, i.e., 𝜆, and 𝛾 , we vary their val-
ues within the range of [1𝑒−4, 1𝑒3] and evaluate their impact on
performance in the Section 4.5.1. Regarding the number of clients
𝐶 in a single-dataset, we vary it within the range of [2, . . . , 10]
and evaluate its impact in Section 4.5.2, while for multi-dataset,
the number of clients is set to the number of its sub-datasets.
Besides, for the number of GIN layers 𝐾 , we also evaluate its
impact under different values in Section 4.5.3.

• Baseline Settings: For the state-of-the-art baselines including
FedAvg, FedProx, GCFL, and FedStar, we integrate them with
DeepSVDD [29] to construct the end-to-end GAD model. We
also include the self-training strategy that abandons collabora-
tive learning, as one of the baselines. Besides, we employ the
same GIN backbone with FGAD to guarantee the fairness of the
experiment. The objective of local models in each client is to
minimize the distance from the projection of the training data
in the latent space to the centroid, which is randomly initialized
following the setting in DeepSVDD and fixed throughout the
training phase. In the collaborative learning phase, we upload the
learned decision boundaries in each client as part of the parame-
ters and aggregate them in the server. Finally, we can calculate
the anomaly score by the distances between the graph represen-
tation and the centroid after training, and the smaller the score,
the more the graph tends to be considered normal.

• Implementation: The implementation of FGAD is based on
PyTorch Geometric [7] library, and the experiments are run on
NVIDIA Tesla A100 GPU with AMD EPYC 7532 CPU.

A.3 Theoretical Complexity Analysis
Here we provide theoretical complexity analysis of the proposed
FGAD method. Assume there are 𝑁 graphs across all clients, and
with maximal 𝑚 nodes and |𝐸 |max edges within a graph. In the
local model of each client, the maximal dimension among input and
latent space of GIN is denoted by 𝑑 , and the number of GIN layers is

represented by 𝐿. In Addition, the maximal latent dimensions of the
teacher and student heads are denoted by 𝑑t and 𝑑s, respectively.
Besides, the number of latent layers in the teacher and student
heads is denoted by 𝐾t and 𝐾s. Subsequently, we analyze the time
and space complexity of FGAD within a single client, as well as the
communication complexity in collaborative learning, as follows:

• Time Complexity: Since the teacher and student models share
the same GIN backbone, the time complexity of the backbone net-
work is O(𝑁𝐿(𝑚𝑑2 + |𝐸 |max𝑑)). Similarly, the time complexity of
the anomaly generator in the teacher model mainly comes from
the GIN. For the teacher and student heads, the time complexi-
ties are O(𝐾t𝑑𝑑t) and O(𝐾s𝑑𝑑s), respectively. Consequently, the
overall time complexity of FGAD framework is approximately
O(2𝑁𝐿(𝑚𝑑2 + |𝐸 |max𝑑) + (𝐾t𝑑t + 𝐾s𝑑s)𝑑), where includes the
anomaly generator weight-shared GIN backbone, and the teacher
and student heads.

• Space Complexity: For the space complexity of the GIN back-
bone, the space complexity mainly comes from the storage of
weight and bias matrices in each layer, which can be denoted by
O(𝐿𝑑 (1 + 𝑑). For the teacher and student heads, their space com-
plexities can be derived similarly, i.e., O(𝐾t𝑑 (1+𝑑t) +𝐾s𝑑 (1+𝑑s)).
Consequently, the overall space complexity of FGAD framework
is approximately O(𝐿𝑑 (1 + 𝑑) + 𝐾t𝑑 (1 + 𝑑t) + 𝐾s𝑑 (1 + 𝑑s)).

• CommunicationComplexity: Since the teachermodel in FGAD
is used for the personalization of local clients, only the stu-
dent head engages in collaboration. Consequently, the time and
space complexities in a communication round are approximately
O(𝐾s𝑑𝑑s) and O(𝐾s𝑑 (1 + 𝑑s)).

A.4 Empirical Complexity Analysis
To more comprehensively analyze the complexity of FGAD, we
further provide empirical complexity analysis. Specifically, we com-
pare the running time (in local) and communication time (in collab-
oration) of FGAD with other baselines. Note that the experiment
is conducted under uniform device settings (detailed in Appendix
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Figure 7: Running time and communication cost comparison
in 200 epochs.
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Figure 8: Parameter sensitivity of different dimensions for
hidden layers.

A.2) to ensure fairness. The experimental results are presented in
Fig. 7.

It can be observed that the time complexity of FGAD is competi-
tive with several baselines, e.g., that of FedStar, and significantly
better than that of GCFL. Combined with the performance compari-
son in Tables 1 and 2 (in the paper), the overall experimental results
demonstrate that FGAD not only significantly improves anomaly
detection performance but also possesses promising time efficiency
compared to other baselines.

Additionally, communication cost (time) is also an important
evaluation metric in federated learning. Therefore, we further con-
duct the comparative experiment to demonstrate the effectiveness
of FGAD. As shown in Fig. 7 (b), FGAD has the lowest communi-
cation time compared with other baselines, which aligns with the
comparison of exchanging amount of network parameters in Ta-
ble 1. It should be noted that this is the analog communication time
without considering the network bandwidth. When it comes to real-
world collaboration, the network bandwidth will significantly im-
pact the efficiency of model parameter transmission. Consequently,
in cases of models with large parameter sizes, the communication
time becomes a pivotal factor influencing the time complexity of
collaborative learning.

A.5 Impact of Latent Dimensions
Here, we further conduct additional parameter analysis for the
impact of the latent dimension in the GIN layer. Specifically, we
set the latent dimension from [4, 128], and the experimental results
on MOLECULES and IMDB-BINARY shown in Fig. 8. The results
suggest that FGAD exhibits relatively stable performance across a
wide range of latent layer dimensions, demonstrating its robustness.
Nevertheless, it can be observed that excessively high dimensions

(e.g., 128) might adversely affect performance, potentially due to
the redundant information it brings.

A.6 Justification of the Backbone Sharing
To justify the rationale for sharing the backbone network between
the teacher and student models, we conduct additional experiments
by comparing the performance of FGAD with and without shar-
ing the GIN backbone. The results are presented in Table 5. We
can observe only a marginal difference in performance between
these two strategies. This observation suggests that sharing the
GIN backbone would not decrease the effectiveness of knowledge
distillation in FGAD. More importantly, the significant benefit of
sharing the GIN backbone is the substantial reduction in model
complexity. This streamlined architecture leads to a more efficient
model in terms of computational resources and memory usage.

Table 5: Peformance (mean(%) ± std(%)) of FGAD under
shared/unshared GIN backbone.

Backbone IMDB-BINARY IMDB-MULTI

AUC AUPRC AUC AUPRC

Shared GIN 64.97±0.52 66.60±1.12 60.51±1.18 66.82±0.14
w/o Shared GIN 63.13±1.19 66.43±2.23 58.13±0.84 66.67±0.00
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